en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王克青(1991—),女,2020年博士毕业于中国科学院大学,物理化学专业,馆员,研究方向为文物保护和考古相关的科技分析,E-mail:wangkeqing@chnmuseum.cn

中图分类号:K876.41

文献标识码:A

文章编号:1005-1538(2022)05-0043-10

DOI:10.16334/j.cnki.cn31-1652/k.20211102319

参考文献 1
ALTERIO S,BARBARO S,CAMPIONE F C,et al.Microclimate management for the preservation of cultural heritage[J].Conservation Science in Cultural Heritage,2010,10(1):71-100.
参考文献 2
吴雪威,闫莹,周浩,等.模拟青铜文物在乙酸气氛中的腐蚀行为[J].腐蚀与防护,2018,39(4):258-264,326.WU Xuewei,YAN Ying,ZHOU Hao,et al.Corrosion behavior of simulated bronze relics in acetic acid atmosphere[J].Corrosion & Protection,2018,39(4):258-264,326.
参考文献 3
董少华,杨军昌,束家平,等.显微红外光谱透射法快速鉴别“粉状锈”[J].文物保护与考古科学,2019,31(1):111-117.DONG Shaohua,YANG Junchang,SHU Jiaping,et al.Rapid identification of powdery rust using transmission infrared microspectroscopy[J].Sciences of Conservation and Archaeology,2019,31(1):111-117.
参考文献 4
周剑虹,刘成,何朝晖.出土青铜器是否带有原生“粉状锈”的探讨[J].文物保护与考古科学,2006,18(2):51-56.ZHOU Jianhong,LIU Cheng,HE Zhaohui.An investigation of the origin of powdery rust of excavated bronze[J].Sciences of Conservation and Archaeology,2006,18(2):51-56.
参考文献 5
周越,闫灵通,李丽,等.X射线光谱在文物无损分析中的研究进展[J].光谱学与光谱分析,2021,41(5):1329-1335.ZHOU Yue,YAN Lingtong,LI Li,et al.The progress of the application of X-ray spectroscopy in the nondestructive analysis of relics[J].Spectroscopy and Spectral Analysis,2021,41(5):1329-1335.
参考文献 6
何娟.河南博物院藏三件青铜器的科学分析[J].中原文物,2012(5):93-97.HE Juan.Scientific analysis of three bronzes in Henan Museum[J].Cultural Relics of Central China,2012(5):93-97.
参考文献 7
周浩,祝鸿范,蔡兰坤.青铜器锈蚀结构组成及形态的比较研究[J].文物保护与考古科学,2005,17(3):22-27.ZHOU Hao,ZHU Hongfan,CAI Lankun.Morphology and composition of the rust on bronze artifacts[J].Sciences of Conservation and Archaeology,2005,17(3):22-27.
参考文献 8
LIU Wei,LI Mo,WU Na,et al.A new application of fiber optics reflection spectroscopy(FORS):Identification of “bronze disease” induced corrosion products on ancient bronzes[J].Journal of Cultural Heritage,2021,49:19-27.
参考文献 9
徐来五,王勇,杨成达,等.两件中国古代青铜错金(银)器表面锈蚀产物的光谱分析[J].光谱学与光谱分析,2020,40(5):1457-1460.XU Laiwu,WANG Yong,YANG Chengda,et al.Spectral analysis of surface corrosion products of two embedded gold or silver bronze in ancient China[J].Spectroscopy and Spectral Analysis,2020,40(5):1457-1460.
参考文献 10
成小林,杨琴.五种含氯铜合金腐蚀产物的拉曼光谱及扫描电镜的分析研究[J].文物保护与考古科学,2018,30(4):26-33.CHENG Xiaolin,YANG Qin.Study of five chloride-containing corrosion products from copper and bronze artifacts using Raman spectroscopy and scanning electron microscopy[J].Sciences of Conservation and Archaeology,2018,30(4):26-33.
参考文献 11
FISCHER A,EGGERT G,DINNEBIER R,et al.When glass and metal corrode together,Ⅴ:sodium copper formate[J].Studies in Conservation,2018,63(6):342-355.
参考文献 12
FISCHER A,EGGERT G,STELZNER J.When glass and metal corrode together,Ⅵ:chalconatronite[J].Studies in Conservation,2020,65(3):152-159.
参考文献 13
CARTER R O,POINDEXTER B D,WEBER W H.Vibrational spectra of copper formate tetrahydrate,copper formate dihydrate and three anhydrous forms of copper formate[J].Vibrational Spectroscopy,1991,2(2-3):125-134.
参考文献 14
POLLARD A M,THOMAS R G,WILLIAMS P A.The synthesis and composition of georgeite and its reactions to form other secondary copper(Ⅱ)carbonates[J].Mineralogical Magazine,1991,55:163-166.
参考文献 15
EGGERT G,FISCHER A,DINNEBIER R E.One heritage corrosion product less:basic sodium copper carbonate[J].Heritage Science,2016,4:27:1-27:5.
参考文献 16
GETTENS R J,FRONDEL C.Chalconatronite:an alteration product on some ancient Egyptian bronzes[J].Studies in Conservation,1955,2(2):64-75.
参考文献 17
SCOTT D A.Copper and bronze in art:corrosion,colorants,conservation[M].Los Angeles:The Getty Conservation Institute,2002.
参考文献 18
张月玲.从《山东滕州市博物馆馆藏青铜器保护修复方案》的编制论青铜器保护技术的继承和发展[M]//王春法.中国国家博物馆文物保护修复论文集.北京:北京时代华文书局,2019:122-135.ZHANG Yueling.Discussion on the inheritance and development of bronze ware protection technology from the compilation of Shandong Tengzhou Museum Collection Bronze Ware Protection and Restoration Plan[M]//WANG Chunfa.Proceedings on the Conservation and Restoration of Cultural Relics by the National Museum of China.Beijing:Beijing Times Chinese Press,2019:122-135.
参考文献 19
马燕如.浅谈埋藏环境与青铜器的腐蚀产物[C]//文物保护研究新论(二):全国第十一届考古与文物保护化学学术研讨会论文集.北京:文物出版社,2010:105-107.MA Yanru.Discussion on burial environments and corrosion products of bronze ware[C]//New Theory on the Research of Cultural Relics Protection(2):Proceedings of the 11th National Symposium on Archaeology and Conservation Chemistry.Beijing:Cultural Relics Press,2010:105-107.
参考文献 20
王辇,张然,马燕如.露天展示的四座铜雕塑清洗保护报告[M]//王春法.中国国家博物馆文物保护修复论文集.北京:北京时代华文书局,2020:90-98.WANG Nian,ZHANG Ran,MA Yanru.Cleaning and protection report of four bronze sculptures displayed in the open air[M]//WANG Chunfa.Proceedings on the Conservation and Restoration of Cultural Relics by the National Museum of China.Beijing:Beijing Times Chinese Press,2020:90-98.
参考文献 21
周新光,吴来明,宋国新.木材中挥发性有机酸的SPME-GC/MS分析研究[J].文物保护与考古科学,2009,21(增刊1):30-32.ZHOU Xinguang,WU Laiming,SONG Guoxin.Analysis of volatile organic acids in woods by solid phase microextraction-gas chromatography-mass spectrometry(SPME-GC/MS)[J].Sciences of Conservation and Archaeology,2009,21(Suppl 1):30-32.
参考文献 22
王荣,刘霞,施超欧,等.博物馆藏展材料中挥发性有机酸的快速采样及检测方法研究[J].环境化学,2011,30(7):1372-1373.WANG Rong,LIU Xia,SHI Chaoou,et al.Research on rapid sampling and detection methods for volatile organic acids in museum collection materials[J].Environmental Chemistry,2011,30(7):1372-1373.
参考文献 23
徐方圆,解玉林,刘霞,等.文物藏展常用木材挥发性酸快速检测评价方法研究[J].文物保护与考古科学,2010,22(2):1-5.XU Fangyuan,XIE Yulin,LIU Xia,et al.Fast determination of volatile acids emitted from lumber used for the storage or display of museum objects[J].Sciences of Conservation and Archaeology,2010,22(2):1-5.
参考文献 24
GIBSON L T,WATT C M.Acetic and formic acids emitted ftom wood samples and their effect on selected materials in museum environments[J].Corrosion Science,2010,52(1):172-178.
参考文献 25
THICKETT D,ODLYHA M.Note on the identification of an unusual pale blue corrosion product from Egyptian copper alloy artifacts[J].Studies in Conservation,2000,45(1):63-67.
参考文献 26
TRENTELMAN K,STODULSKI L,SCOTT D,et al.The characterization of a new pale blue corrosion product found on copper alloy artifacts[J].Studies in Conservation,2002,47(4):217-227.
参考文献 27
DINNEBIER R E,RUNCˇEVSKI T,FISCHER A,et al.Solid-state structure of a degradation product frequently observed on historic metal objects[J].Inorganic Chemistry,2015,54(6):2638-2642.
参考文献 28
王全玉.馆藏金属器物上浅蓝色铜锈蚀产物的辨别与成因分析[J].文物保护与考古科学,2020,32(6):117-125.WANG Quanyu.Identification and interpretation of pale blue copper corrosion products formed on metal objects in museum collections[J].Sciences of Conservation and Archaeology,2020,32(6):117-125.
参考文献 29
李沫,杨琴,吴娜,等.馆藏新石器时期彩陶鼓的脱盐保护.[M]//王春法.中国国家博物馆文物保护修复论文集.北京:北京时代华文书局,2020:36-44.LI Mo,YANG Qin,WU Na,et al.Desalination protection of painted pottery drums in the Neolithic period[M]//WANG Chunfa.Proceedings on the Conservation and Restoration of Cultural Relics by the National Museum of China.Beijing:Beijing Times Chinese Press,2020:90-98.
参考文献 30
王倩倩,石安美,唐铭,等.一种同时检测馆藏环境中多种挥发性有机酸气体浓度的方法:CN202011431800.0[P].2020-12-09.WANG Qianqian,SHI Anmei,TANG Ming,et al.A method for simultaneously detecting the concentration of multiple volatile organic acid gases in the collection environment:CN202011431800.0[P].2020-12-09.
目录contents

    摘要

    铜雕塑作为现代艺术品因其历史价值、文化价值、审美价值、科技价值和时代价值被越来越多的博物馆收藏。经过岁月的洗礼,雕塑上有时也会出现锈蚀产物,锈蚀产物或影响艺术品的美感或进一步损害雕塑,因此需要对锈蚀产物进行鉴别,然后采取适合的方法将其去除。为此,通过超景深三维视频显微观察、扫描电子显微镜-能谱仪、显微激光拉曼光谱和傅立叶变换显微红外光谱对一件中国国家博物馆馆藏铜雕塑锈蚀产物进行取样分析。能谱结果表明该锈蚀产物中没有氯离子,再结合拉曼光谱和显微红外光谱结果可以确定锈蚀产物是蓝铜钠石[Na2Cu(CO3)2·3H2O]和含有钠离子和氧离子的水合甲酸铜[Cu4Na4O(HCOO)8(OH)2·4H2O],这种铜锈蚀产物在国内报道较少。为防止它们进一步腐蚀和损害雕塑,选择使用物理方法将锈蚀产物清除。科学的检测方法和分析手段为铜雕塑保护方案的制定提供了重要信息支撑和理论依据。

    Abstract

       Sculptures are not only a historical record of social development, the display of people’s aesthetic sentiment and spiritual life, but also a symbol and carrier of advanced cultures. As modern artworks, copper sculptures have been collected by more and more museums due to their historical, cultural, aesthetic, technological and era value. Corrosion products may sometimes be produced on sculptures after years, which may affect the beauty of artworks or further damage sculptures. Therefore, it is necessary to identify corrosion products and then take suitable methods to remove them. The corrosion products includes not only inorganic copper salts, but also some organic copper salts caused by volatile organic compounds. This complexity poses great challenges for analytical detection and result analysis.

       Corrosion products of a copper sculpture collected by the National Museum of China were analyzed using several methods, including 3D video ultra-depth-of-field microscopy, scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDS), micro-Raman spectrometry and microscopic Fourier transform infrared (micro-FTIR) spectrometry. The corrosion products observed under an optical microscope are mainly light blue and blue. The SEM-EDS results show that there is no chloride element in the corrosion products of the copper sculptures. Accordig to the results of Raman and micro-FTIR spectrometry, it can be determined that the corrosion products are chalconatronite [Na2Cu(CO3)2·3H2O] and sodium copper formate hydroxide oxide hydrate [Cu4Na4O(HCOO)8(OH)2·4H2O] which is rarely seen in domestic reports on copper corrosion products. It is of great significance for understanding the corrosion products of copper cultural relics. Scientific detection methods and analysis results provide important information and guidance for investigating the causes of formation of corrosion products and making proposals for the conservation of copper sculptures.

       Analysis of the preservation conditions and storage environment of the copper sculpture revealed that the sculptures was generally displayed or stored without independent cabinet. On the copper sculpture, there are stains which may be residues from cleaning. It is known that Cu4Na4O(HCOO)8(OH)2·4H2O can be synthesized by storing chalconatronite in a desiccator with a formaldehyde/formic acid-rich atmosphere. Therefore, it can also be inferred that formaldehyde/formic acid exists in the exhibition or storage environment of the sculpture. The volatile organic compounds in the collection environment mainly come from the release of building materials and wood materials. In the warehouse, the bottom of the cabinet where the copper sculpture is stored is covered with wooden boards, which are the source of the release of volatile organic compounds such as formic acid and acetic acid. The above are reasons for the formation of corrosion products on the sculpture. In order to prevent the small corrosion produts from further corroding and damaging the sculpture, physical methods will be used to remove the corrosion products. In addition to keeping clean and controlling the temperatures and humidity inside and outside the storage places of copper sculptures, they should be kept away from acidic substances and items such as wooden objects that release acidic gases easily, so as to prevent harmful gases from adversely affecting cultural relics.

  • 0 引言

  • 中国不仅拥有灿烂的古代青铜文明,还有大量的近现代铜质艺术品。凝结着人类智慧和精华的铜质艺术品作为博物馆展览的重要组成部分,向观众传递它的历史价值、文化价值、审美价值、科技价值和时代价值。铜质雕塑以其独特的美感受到越来越多艺术家和观众的青睐。不论是古代青铜器还是现代铜雕塑,出土环境、存放环境都对器物的保存有重要影响[1-2]。铜质合金的锈蚀产物主要包括有害锈和一般锈蚀产物两大类。对于氯铜矿、副氯铜矿等含氯的、有害的“粉状锈”必须使用物理或化学等方法将其去除;在铜的一般锈蚀产物中,对于那些相对比较致密的锈蚀产物,在不影响文物原貌和外观的情况下可以考虑保留;对于那些相对比较疏松的锈蚀产物,由于其容易吸附水汽等物质加速铜合金的腐蚀,需要将其除去;或者锈蚀产物影响文物的铭文、纹饰的清晰度等重要的历史信息,则也需要将其去除[3-4]。由于铜的很多锈蚀产物外观比较相近,甚至混杂相生,仅靠经验很难准确判断,所以就需要使用科学的检测方法和分析手段确定锈蚀产物的组成及准确位置,然后制定相应的保护修复方案。

  • 铜的锈蚀产物不仅有无机铜盐,还有一些挥发性有机酸导致的有机铜盐,这种复杂性对分析检测方法提出了更大的挑战。分析铜锈蚀产物常用的检测方法有X射线衍射(XRD)[5]、拉曼光谱(Raman)[6]、红外光谱(IR)、扫描电镜-能谱技术(SEM-EDS)[7]。除了以上常见方法外,基于无损检测的光纤反射光谱(FORS)[8]、X射线荧光光谱仪(XRF)[9]等方法近年来也颇受欢迎。每种方法都有其自身优势和局限性,为了高效、快速获得准确的结果,同时尽量减小对文物的伤害,往往需要多种分析方法结合,结果相互佐证以提高分析结果的准确性和可靠性。针对这件馆藏的铜雕塑作品,采用SEM-EDS、Raman和IR几种手段相结合的方式对雕塑的锈蚀产物进行检测和分析,结果表明该锈蚀产物成分是蓝铜钠石和含有钠离子和氧离子的水合甲酸铜,进一步分析了锈蚀产物产生的原因并提出保护建议。

  • 1 样品与实验方法

  • 1.1 样品来源

  • 中国国家博物馆藏一件现代铜雕塑作品《哲学家梁漱溟》上出现了斑点状锈蚀,这尊雕塑是吴为山先生于2006年创作,如图1所示,尺寸为70cm×65cm×105cm。锈蚀位置如图1箭头所示,锈蚀产物呈浅绿色粉末状、疏松锈蚀。取锈蚀产物作为样品,用于锈蚀产物的形貌观察、元素组成及物相结构分析。

  • 图1 铜雕塑《哲学家梁漱溟》

  • Fig.1 Copper sculpture Philosopher Liang Shuming

  • 1.2 形貌观察及元素分析

  • 1.2.1 三维视频显微镜

  • 采用配备PlanApo D 5×/0.3FWD 30mm物镜的三维视频显微镜Smartzoom5(德国,ZEISS公司)初步观察铜雕塑锈蚀产物的形貌和颜色。

  • 1.2.2 扫描电子显微镜-能谱仪(SEM-EDS)分析

  • 实验中使用场发射环境扫描电子显微镜(美国,FEI Quanta650FEG)-能谱仪(英国,Oxford X-Max50)观察样品微观形貌以及分析元素组成。为了提高样品的导电性和清晰度,在样品表面喷镀一层15~20nm厚度的金膜,喷金后在高真空模式观察形貌和能谱分析,高真空模式4.26×10-3 Pa,加速电压20kV,束斑4.0,工作距离10mm,能谱分析时采集时间大于60s。

  • 1.3 显微激光共聚焦拉曼光谱(Micro-Raman)分析

  • 采用法国HORIBA Jobin Yvon公司生产的LabRAM HR Evolution型显微激光共聚焦拉曼光谱仪测试样品的拉曼光谱,测试前使用单晶硅片校准仪器。具体测样参数:激光器激发波长为473nm,长焦50倍物镜,600l/m光栅,狭缝宽度为100 μm,仪器的分辨率为2cm-1,光斑尺寸1 μm,激发功率0.5mW,测试范围为100~4 000cm-1,曝光时间50s,累积扫描2次。

  • 1.4 傅立叶变换显微红外光谱(FTIR)分析

  • 使用配备MCT检测器和单个金刚石池的Nicolet iN10MX傅立叶变换显微红外光谱仪(美国,Thermo Fisher Scientific)对取自铜雕塑上的锈蚀产物进行红外光谱分析。将待测物分散在金刚石池上,用金刚石池将待测物压薄,在红外显微镜上以透射方式采集红外谱图。在4 000~680cm-1波数范围内采集了16次扫描,采集时间为3s,光谱的分辨率为8cm-1

  • 2 结果与讨论

  • 2.1 超景深显微观察

  • 采用超景深显微镜能够对铜雕塑锈蚀产物的显微形貌特征进行观察(图2),从其外观看锈蚀产物分为浅蓝色和蓝色两种,两种锈蚀产物均呈粉末颗粒状,颗粒大小相对比较均一。

  • 图2 铜雕塑锈蚀产物三维视频显微照片

  • Fig.2 3D video micrographs of corrosion products on the copper sculpture

  • 2.2 微观形貌观察及能谱分析

  • 按照1.2.2中所描述的方法和条件,在场发射环境扫描电子显微镜下观察了该锈蚀产物的形貌并分析了其元素组成。当锈蚀产物放大100倍时,可以看到颗粒状物质(图3a);当区域1(浅蓝色)放大后,看到该物质是由边长约1~2 μm的方形薄板状微晶组成(图3b),且晶体结构较好。进一步,通过能谱仪分析了铜雕塑锈蚀产物的元素组成,在区域1里选取了3个位置点(图4a),平行测试了这3个位点的元素组成,由能谱分析谱图(图4b)可知它包含钠(Na)、铜(Cu)、碳(C)、氧(O)和微量的钾(K)五种元素,每种元素百分含量如表1所示。通过表1可知(谱图11,12和13),区域1中的3个位点所包含的几种元素的组成比较稳定,说明物质比较均一。另外,在高放大倍数下还发现区域2(蓝色)与区域1形貌差别很大,说明两个区域有不同的物质存在,区域2晶体呈长方体片状(图3c),在区域2里选取了4个位置点(图4c),平行测试了这4个位点的元素组成,由能谱分析结果可知,区域2的元素组成(图4d)与区域1相同,表1(谱图14,15,16和17)给出了区域2中各元素的含量(%)。

  • 图3 铜雕塑锈蚀产物扫描电子显微镜图像

  • Fig.3 SEM images of corrosion products on the copper sculpture

  • 图4 铜雕塑锈蚀产物a)区域1和c)区域2的扫描电镜图及对应的能谱分析谱图

  • Fig.4 SEM images and energy spectral corrosion products at Section 1and Section 2

  • 表1 铜雕塑锈蚀产物区域1和区域2成分中元素类别及其含量

  • Table1 Element types and contents of corrosion products on the copper sculpture

  • 2.3 拉曼光谱分析

  • 显微拉曼光谱技术是一种微损/无损分析技术,具有灵敏度高、不需要特别制样、取样量少等优点,在铜合金腐蚀产物检测方面有着广泛的应用[10]。使用显微激光共聚焦拉曼光谱仪对铜雕塑锈蚀产物进行分析,结果如图5所示。图5a是区域1中物质的拉曼光谱,在拉曼光谱配备的KnowItAll谱库软件中并未检索到相关谱图。经查阅文献,发现它与文献中已报道的含有钠离子和氧离子的水合甲酸铜Cu4Na4O(HCOO)8(OH)2·4H2O的谱图(图5b)非常吻合[11]。铜雕塑锈蚀产物在显微拉曼中呈现浅蓝色,文献中也报道过这种浅蓝色锈蚀产物的形貌,是薄板状微晶[11],这与扫描电镜图3b中锈蚀产物的形貌一致。谱图显示了在90、195、257、303、442、530、656、786、938、1 066、1 342、1 367、1 592、2 721、2 860、2 961、3 548cm-1处的主要拉曼谱带。拉曼光谱在1 367cm-1处的强带可归属于甲酸盐中C-H面内弯曲振动,2 860cm-1处强的独特谱带可归属于甲酸盐中C-H的伸缩振动。谱图中所有出峰位置对应的特征振动模式总结于表2。

  • 图5c是区域2中物质的拉曼光谱,在拉曼光谱配备的KnowItAll谱库软件中并未检索到相关谱图。经查阅文献,发现它与文献中已报道的蓝铜钠石Na2Cu(CO3)2·3H2O的谱图(图5d)峰位非常吻合[12],锈蚀产物在显微拉曼中呈现蓝色,谱图显示了在161、330、699、764、1 053、1 072、1 331、1 522、1 600、3 214、3 443、3 572cm-1处的主要拉曼谱带。拉曼光谱在330cm-1处的强带可归属于CO面外弯曲振动,1 053和1 072cm-1处的两个非常强的特征带归属于碳酸盐对称拉伸。谱图中所有出峰位置对应的特征振动模式总结于表2。在通过拉曼光谱获得锈蚀产物成分的同时,这两种物质的拉曼谱图也丰富了文物及艺术品相关领域的拉曼谱库。

  • 图5 (a)区域1和(c)区域2锈蚀产物的拉曼光谱及文献中参考谱图[11-12]

  • Fig.5 Raman spectra of corrosion products at Section 1 (a) and Section 2 (c) and reference spectra in literatures[11-12]

  • 2.4 显微红外光谱分析

  • 与传统傅立叶变换红外光谱技术相比,傅立叶显微红外光谱技术无需制样可直接分析样品,灵敏度高,操作过程简单、可视化程度高,能够直接观测锈蚀产物的颜色和形貌等,因此非常适合微量样品分析检测[3]。通过成像部分可以确定检测位置,对锈蚀产物种类进行初步判断;通过分析红外光谱图可以确定锈蚀产物的种类和成分。这尊铜雕塑上的锈蚀产物非常少,很适合用显微红外技术进行测试和分析。在本工作中,使用显微红外面扫描模式测量了区域1和区域2锈蚀产物的面分布情况及其对应的红外光谱和峰位(表3)。

  • 表2 铜雕塑锈蚀产物拉曼位移及其振动模式

  • Table2 Raman shift and vibrational mode assignment of corrosion products on the copper sculpture

  • 注:w=weak, m=medium, s=strong, v=very, sh=shoulder。

  • 表3 铜雕塑锈蚀产物红外光谱峰位及文献中参考峰位

  • Table3 IR spectra of corrosion products on the copper sculpture and those in references

  • 注:w=weak, m=medium, s=strong, v=very, sh=shoulder, b=broad。

  • 首先使用可见光扫描系统获得锈蚀产物可见光图像,以确定红外扫描区域。从样品的可见图像上选择分析区域,如图6a,区域大小为800 μm×700 μm,使用透射模式获得锈蚀产物的红外化学图像,图6b是在1 613cm-1处的化学成像。锈蚀产物Cu4Na4O(HCOO)8(OH)2·4H2O的红外光谱如图6c所示,与文献中报道的甲酸铜Cu(HCOO)2·4H2O的红外光谱有一些相似[13]。3 365cm-1之间的宽峰是结晶水中O-H的伸缩振动;2 814和2 778cm-1是C-H伸缩振动的基频和它的弯曲振动的倍频的费米共振产生,1 434cm-1是C-H面内弯曲振动,907cm-1是C-H面外弯曲振动;1 730cm-1是甲酸根中C=O的振动;1 355和1 613cm-1是COO的对称、反对称伸缩振动,二个峰都比较强;1 063和1 147cm-1是金属-OH的弯曲振动;843cm-1是OCO的变形振动。

  • 选择分析区域如图6d,区域大小为700 μm×600 μm,使用透射模式获得锈蚀产物的红外化学图像,图6e是在1 601cm-1处的化学成像,其轮廓与光学图像非常一致。锈蚀产物的红外光谱如图6f所示,与文献中Na2Cu(CO3)2·3H2O的红外光谱极为相似[14-15]。红外光谱中,3 567、3 441、3 210cm-1之间的宽峰是结晶水中O-H的伸缩振动;1 601cm-1是O-H弯曲振动。碳酸根的振动带如下:700和751cm-1是[CO3]2-面内弯曲振动;852cm-1是[CO3]2-面外弯曲振动,谱图中出现的较强峰;1 053和1 069cm-1是[CO3]2-对称伸缩振动;1 326和1 352cm-1是[CO3]2-反对称伸缩振动,也是最强峰;1 771和1 819cm-1是[CO3]2-对称伸缩振动和面内弯曲振动的和频峰;2 591cm-1是[CO3]2-反对称和对称伸缩振动的和频峰。

  • 图6 铜雕塑锈蚀产物区域1的(a)可见光图像,(b)1 613cm-1处化学成像,(c)红外光谱;区域2的 (d)可见光图像,(e) 1 601cm-1处化学成像,(f)红外光谱

  • Fig.6 Image (a), mapping on 1 613cm-1 (b) and IR spectrum (c) of corrosion products at Section 1; Image (d), mapping on 1 601cm-1 (e) and IR spectrum (f) of corrosion products at Section 2

  • 2.5 锈蚀产物的介绍、成因及文物保护

  • 蓝铜钠石[Na2Cu(CO3)2·3H2O]是Frondel和Gettens 1955年首次在一件埃及青铜小雕像中空的内部发现的蓝绿色矿物[16]。随后,国外学者们又在多件器物上相继发现了这种矿物,并先后对它的晶体结构、形貌、红外光谱和拉曼光谱等进行了研究。2009年马清林教授等翻译的《艺术品中的铜和青铜——腐蚀产物,颜料,保护》这本书对蓝铜钠石的发现、产生原因、合成与应用等进行了总结[17]。虽然蓝铜钠石在矿物学上比较少见,但它不仅存在于出土的青铜器上,在处理过的青铜器表面也经常可以看到。蓝铜钠石虽然对青铜器无损,但因其颜色鲜艳均匀,给人以改变器物外观的感觉[18]。所以,通过清洗可以使处理后的器物上蓝铜钠石减少到最低限度,避免其影响器物的外观。国内学者对于青铜锈蚀产物蓝铜钠石也有一些研究报道。2010年马燕如等在对一件敦煌出土的汉代铜牛车进行了多项分析后,通过X射线衍射结果得到铜牛车上的腐蚀产物之一就是蓝铜钠石,土壤中阴离子的侵蚀是其形成的主要原因,这在国内相关文献报道中尚属首例[19];2020年王辇等在清洗保护露天展示的四座铜雕塑时,发现其中两件雕塑的锈蚀产物之一就是蓝铜钠石,铜雕塑长期露天放置,防锈层出现缺陷,受大气环境中的有害气体、水分、尘埃等影响产生锈蚀[20];2021年Liu Wei等在对中国国家博物馆藏明代(公元1368—1644年)鎏金“金刚勇识菩萨”进行病害调查分析时,通过光纤反射光谱、拉曼光谱和X射线衍射光谱确定蓝铜钠石也是其腐蚀产物之一[8]。在青铜器保护中,经常采用5%倍半碳酸钠溶液(Na2CO3-NaHCO3)浸泡器物去除有害的氯化物。然而倍半碳酸钠浸泡时间长会使器物颜色向绿、蓝色改变。过量的倍半碳酸钠若不及时去除,可能与锈蚀产物碱式碳酸铜反应生成蓝铜钠石。自然环境中蓝铜钠石的形成主要与含碱式碳酸盐的地表水及地下水相关。

  • 各种实木和人造板是文物收藏柜和储藏柜的常用木质材料。这些木材普遍含有挥发性酸,是影响文物藏展环境的主要因素之一。近年来,文保科学家们研究发现挥发性有机酸气体对文物的危害不容小觑,因此挥发性有机酸类气体导致文物劣化的现象受到文保科学家们的广泛关注。甲酸和乙酸等是博物馆环境中主要的挥发性酸污染物,主要来源于藏展材料、木材等本身的释放[21-23]。周新光等采用固相微萃取(SPME)样品预处理技术,分离富集木材中的挥发性有机物,结合气相色谱-质谱(GC/MS)联用技术对木材中挥发性有机酸进行半定量分析,木材中的挥发性有机酸分布广泛,在9种木材中从乙酸到壬酸均有检出[21];王荣等用被动采样-离子色谱法得到几种常见木材单位表面积甲酸、乙酸的挥发量[22];徐方圆等采用研发的“无动力扩散采样一离子色谱”检测技术检测了14种常用木材,结果显示,各种木材均检测到一定量的甲酸、乙酸挥发[23];Gibson研究了木材中释放的甲酸和乙酸对各类材质文物的影响[24]。挥发性有机酸气体诱发的锈蚀产物除了甲酸铜、乙酸铜这些简单的有机铜盐外,科学家们在文物上还发现了一些较为复杂的有机铜盐。2000年英国的Thickett和Odlyha在器物上发现了较为复杂的浅蓝色有机铜盐,作者采用了XRD、FTIR和热重(TG)三种方法进行表征,但在国际衍射数据库中并没有找到任何与其匹配的物质,最终确定是含钠离子和碳酸根的乙酸铜NaCu(CO3)(CH3CO2)[25]。2002年,美国的Trentelman等首次报道了含有钠离子和氧离子的水合甲酸铜Cu4Na4O(HCOO)8(OH)2·4H2O,当时通过XRD、Raman和X射线光电子能谱仪(XPS)表征后确定该锈蚀产物的成分为CuNaCxHyO6(x ≤5),分子基团的比例(铜离子∶钠离子∶甲酸根∶乙酸根)可能是1∶1∶1∶2(x=5,y=9)或1∶1∶2∶1(x=4,y=6)[26]。由于该测试中拉曼光谱测量范围是0~3 500cm-1,所以没能看到结晶水中O-H在3 540cm-1处的伸缩振动。当时由于经验所限,并未能给出准确的分子式。后来德国Dinnebier等的研究证明:Trentelman等给出的这种浅蓝色锈蚀产物的分子式是不正确的,这种浅蓝色锈蚀产物中不含乙酸根,是含有钠离子和氧离子的水合甲酸铜Cu4Na4O(HCOO)8(OH)2·4H2O,他们还用甲醛/甲酸和蓝铜钠石成功合成了这种化合物,合成化合物的XRD数据同Trentelman等发表的数据非常吻合,拉曼光谱也高度一致[27]。甲醛/甲酸与蓝铜钠石成功合成Cu4Na4O(HCOO)8(OH)2·4H2O这一现象从侧面也反映了Cu4Na4O(HCOO)8(OH)2·4H2O和Na2Cu(CO3)2·3H2O共存的事实。最近,德国Eggert等发现在含有玻璃和金属的复合器物上经常会存在蓝色锈蚀产物,他们的研究指出,浅蓝色锈蚀产物的成分大多为Cu4Na4O(HCOO)8(OH)2·4H2O和Cu2(OH)3HCOO,这种现象是由玻璃腐蚀诱发的金属腐蚀[11]。山东大学王全玉教授在大英博物馆工作的多年间也接触到了许多这种浅蓝色的铜锈蚀产物。2020年,她对每件文物锈蚀产物分析结果和成因予以详细的报道[28]。在国内铜器锈蚀产物中关于含有钠离子和氧离子的水合甲酸铜Cu4Na4O(HCOO)8(OH)2·4H2O的报道还是较为少见。

  • 对于像Cu4Na4O(HCOO)8(OH)2·4H2O、NaCu(CO3)(CH3CO2)和Cu2(OH)3HCOO这样的有机酸导致的锈蚀产物,其产生的原因主要有两大类情形:一是存储或展览环境不当(包括玻璃腐蚀诱发的金属腐蚀、包装囊匣及展具材料释放有机酸导致的金属腐蚀),大气环境中的有害气体、水分、尘埃等综合作用导致锈蚀过程的发生,对于这种情况,首先要除锈,其次替换会释放有机酸的囊匣或展具等材料,保证环境中不存在会释放有机酸的材料,并控制温湿度以减缓其继续腐蚀。二是脱盐过程中化学试剂残留导致的金属腐蚀。对于这种情况,化学方法去锈和防护应慎用,对经过化学处理的器物要确保将化学试剂清除干净且没有任何残留。

  • 这件馆藏铜雕塑是现代艺术品,存放、出展时一般没有独立展柜即裸展,环境中的有害气体、水分、尘埃等综合作用导致锈蚀过程的发生,文物上有污迹做过清洗,可能有残留物;另外这件馆藏铜雕塑在库房存放时柜架底层铺有木板。根据文献报道,木板等是释放挥发性有机酸类气体甲酸、乙酸等的源头[21-23]。中国国家博物馆在文物储存微环境、馆藏环境的分析检测等方面也做过相关研究。李沫等研究发现存放馆藏新石器时期彩陶鼓的木质旧囊匣中存在乙酸、丁酸、戊酸、己酸等有机酸[29];王倩倩等开发了基于离子色谱仪的馆藏环境中多种挥发性有机酸气体(甲酸、乙酸、丙酸、丁酸和戊酸)的同时检测方法,随后通过检测某间含有木制桌子、木制柜子的库房中气体样品,发现了此间库房中主要含甲酸、乙酸和丙酸[30]。以上研究结果说明木制材料是产生挥发性有机酸气体的源头,也是导致这件馆藏铜雕塑腐蚀的主要原因。此次锈蚀区域非常小、也及时发现并将锈蚀产物去除,可以避免其进一步损害铜雕塑。铜雕塑的存放场所内外应干净清洁,存放环境在控制好温湿度的同时,应远离酸性物质及易释放酸性物质的物品如木质物品等,防止产生的有害气体对文物的影响。

  • 3 结论

  • 综上所述,通过三维视频显微镜、扫描电子显微镜-能谱仪、拉曼光谱和显微红外光谱几种科学检测手段,对一件中国国家博物馆馆藏铜雕塑锈蚀产物的成分进行了检测和分析,结果表明铜雕塑上的锈蚀产物分别是Na2Cu(CO3)2·3H2O和Cu4Na4O(HCOO)8(OH)2·4H2O。由于铜雕塑上锈蚀产物较少,所以简单采取物理方法将锈蚀产物除去即可。为了更好地保护文物,要按照文物所需要的保存条件来存放,在控制好温湿度的同时,铜质器物应该保存在一个没有有机酸释放的环境中,日常也要注意定期检查。

  • 参考文献

    • [1] ALTERIO S,BARBARO S,CAMPIONE F C,et al.Microclimate management for the preservation of cultural heritage[J].Conservation Science in Cultural Heritage,2010,10(1):71-100.

    • [2] 吴雪威,闫莹,周浩,等.模拟青铜文物在乙酸气氛中的腐蚀行为[J].腐蚀与防护,2018,39(4):258-264,326.WU Xuewei,YAN Ying,ZHOU Hao,et al.Corrosion behavior of simulated bronze relics in acetic acid atmosphere[J].Corrosion & Protection,2018,39(4):258-264,326.

    • [3] 董少华,杨军昌,束家平,等.显微红外光谱透射法快速鉴别“粉状锈”[J].文物保护与考古科学,2019,31(1):111-117.DONG Shaohua,YANG Junchang,SHU Jiaping,et al.Rapid identification of powdery rust using transmission infrared microspectroscopy[J].Sciences of Conservation and Archaeology,2019,31(1):111-117.

    • [4] 周剑虹,刘成,何朝晖.出土青铜器是否带有原生“粉状锈”的探讨[J].文物保护与考古科学,2006,18(2):51-56.ZHOU Jianhong,LIU Cheng,HE Zhaohui.An investigation of the origin of powdery rust of excavated bronze[J].Sciences of Conservation and Archaeology,2006,18(2):51-56.

    • [5] 周越,闫灵通,李丽,等.X射线光谱在文物无损分析中的研究进展[J].光谱学与光谱分析,2021,41(5):1329-1335.ZHOU Yue,YAN Lingtong,LI Li,et al.The progress of the application of X-ray spectroscopy in the nondestructive analysis of relics[J].Spectroscopy and Spectral Analysis,2021,41(5):1329-1335.

    • [6] 何娟.河南博物院藏三件青铜器的科学分析[J].中原文物,2012(5):93-97.HE Juan.Scientific analysis of three bronzes in Henan Museum[J].Cultural Relics of Central China,2012(5):93-97.

    • [7] 周浩,祝鸿范,蔡兰坤.青铜器锈蚀结构组成及形态的比较研究[J].文物保护与考古科学,2005,17(3):22-27.ZHOU Hao,ZHU Hongfan,CAI Lankun.Morphology and composition of the rust on bronze artifacts[J].Sciences of Conservation and Archaeology,2005,17(3):22-27.

    • [8] LIU Wei,LI Mo,WU Na,et al.A new application of fiber optics reflection spectroscopy(FORS):Identification of “bronze disease” induced corrosion products on ancient bronzes[J].Journal of Cultural Heritage,2021,49:19-27.

    • [9] 徐来五,王勇,杨成达,等.两件中国古代青铜错金(银)器表面锈蚀产物的光谱分析[J].光谱学与光谱分析,2020,40(5):1457-1460.XU Laiwu,WANG Yong,YANG Chengda,et al.Spectral analysis of surface corrosion products of two embedded gold or silver bronze in ancient China[J].Spectroscopy and Spectral Analysis,2020,40(5):1457-1460.

    • [10] 成小林,杨琴.五种含氯铜合金腐蚀产物的拉曼光谱及扫描电镜的分析研究[J].文物保护与考古科学,2018,30(4):26-33.CHENG Xiaolin,YANG Qin.Study of five chloride-containing corrosion products from copper and bronze artifacts using Raman spectroscopy and scanning electron microscopy[J].Sciences of Conservation and Archaeology,2018,30(4):26-33.

    • [11] FISCHER A,EGGERT G,DINNEBIER R,et al.When glass and metal corrode together,Ⅴ:sodium copper formate[J].Studies in Conservation,2018,63(6):342-355.

    • [12] FISCHER A,EGGERT G,STELZNER J.When glass and metal corrode together,Ⅵ:chalconatronite[J].Studies in Conservation,2020,65(3):152-159.

    • [13] CARTER R O,POINDEXTER B D,WEBER W H.Vibrational spectra of copper formate tetrahydrate,copper formate dihydrate and three anhydrous forms of copper formate[J].Vibrational Spectroscopy,1991,2(2-3):125-134.

    • [14] POLLARD A M,THOMAS R G,WILLIAMS P A.The synthesis and composition of georgeite and its reactions to form other secondary copper(Ⅱ)carbonates[J].Mineralogical Magazine,1991,55:163-166.

    • [15] EGGERT G,FISCHER A,DINNEBIER R E.One heritage corrosion product less:basic sodium copper carbonate[J].Heritage Science,2016,4:27:1-27:5.

    • [16] GETTENS R J,FRONDEL C.Chalconatronite:an alteration product on some ancient Egyptian bronzes[J].Studies in Conservation,1955,2(2):64-75.

    • [17] SCOTT D A.Copper and bronze in art:corrosion,colorants,conservation[M].Los Angeles:The Getty Conservation Institute,2002.

    • [18] 张月玲.从《山东滕州市博物馆馆藏青铜器保护修复方案》的编制论青铜器保护技术的继承和发展[M]//王春法.中国国家博物馆文物保护修复论文集.北京:北京时代华文书局,2019:122-135.ZHANG Yueling.Discussion on the inheritance and development of bronze ware protection technology from the compilation of Shandong Tengzhou Museum Collection Bronze Ware Protection and Restoration Plan[M]//WANG Chunfa.Proceedings on the Conservation and Restoration of Cultural Relics by the National Museum of China.Beijing:Beijing Times Chinese Press,2019:122-135.

    • [19] 马燕如.浅谈埋藏环境与青铜器的腐蚀产物[C]//文物保护研究新论(二):全国第十一届考古与文物保护化学学术研讨会论文集.北京:文物出版社,2010:105-107.MA Yanru.Discussion on burial environments and corrosion products of bronze ware[C]//New Theory on the Research of Cultural Relics Protection(2):Proceedings of the 11th National Symposium on Archaeology and Conservation Chemistry.Beijing:Cultural Relics Press,2010:105-107.

    • [20] 王辇,张然,马燕如.露天展示的四座铜雕塑清洗保护报告[M]//王春法.中国国家博物馆文物保护修复论文集.北京:北京时代华文书局,2020:90-98.WANG Nian,ZHANG Ran,MA Yanru.Cleaning and protection report of four bronze sculptures displayed in the open air[M]//WANG Chunfa.Proceedings on the Conservation and Restoration of Cultural Relics by the National Museum of China.Beijing:Beijing Times Chinese Press,2020:90-98.

    • [21] 周新光,吴来明,宋国新.木材中挥发性有机酸的SPME-GC/MS分析研究[J].文物保护与考古科学,2009,21(增刊1):30-32.ZHOU Xinguang,WU Laiming,SONG Guoxin.Analysis of volatile organic acids in woods by solid phase microextraction-gas chromatography-mass spectrometry(SPME-GC/MS)[J].Sciences of Conservation and Archaeology,2009,21(Suppl 1):30-32.

    • [22] 王荣,刘霞,施超欧,等.博物馆藏展材料中挥发性有机酸的快速采样及检测方法研究[J].环境化学,2011,30(7):1372-1373.WANG Rong,LIU Xia,SHI Chaoou,et al.Research on rapid sampling and detection methods for volatile organic acids in museum collection materials[J].Environmental Chemistry,2011,30(7):1372-1373.

    • [23] 徐方圆,解玉林,刘霞,等.文物藏展常用木材挥发性酸快速检测评价方法研究[J].文物保护与考古科学,2010,22(2):1-5.XU Fangyuan,XIE Yulin,LIU Xia,et al.Fast determination of volatile acids emitted from lumber used for the storage or display of museum objects[J].Sciences of Conservation and Archaeology,2010,22(2):1-5.

    • [24] GIBSON L T,WATT C M.Acetic and formic acids emitted ftom wood samples and their effect on selected materials in museum environments[J].Corrosion Science,2010,52(1):172-178.

    • [25] THICKETT D,ODLYHA M.Note on the identification of an unusual pale blue corrosion product from Egyptian copper alloy artifacts[J].Studies in Conservation,2000,45(1):63-67.

    • [26] TRENTELMAN K,STODULSKI L,SCOTT D,et al.The characterization of a new pale blue corrosion product found on copper alloy artifacts[J].Studies in Conservation,2002,47(4):217-227.

    • [27] DINNEBIER R E,RUNCˇEVSKI T,FISCHER A,et al.Solid-state structure of a degradation product frequently observed on historic metal objects[J].Inorganic Chemistry,2015,54(6):2638-2642.

    • [28] 王全玉.馆藏金属器物上浅蓝色铜锈蚀产物的辨别与成因分析[J].文物保护与考古科学,2020,32(6):117-125.WANG Quanyu.Identification and interpretation of pale blue copper corrosion products formed on metal objects in museum collections[J].Sciences of Conservation and Archaeology,2020,32(6):117-125.

    • [29] 李沫,杨琴,吴娜,等.馆藏新石器时期彩陶鼓的脱盐保护.[M]//王春法.中国国家博物馆文物保护修复论文集.北京:北京时代华文书局,2020:36-44.LI Mo,YANG Qin,WU Na,et al.Desalination protection of painted pottery drums in the Neolithic period[M]//WANG Chunfa.Proceedings on the Conservation and Restoration of Cultural Relics by the National Museum of China.Beijing:Beijing Times Chinese Press,2020:90-98.

    • [30] 王倩倩,石安美,唐铭,等.一种同时检测馆藏环境中多种挥发性有机酸气体浓度的方法:CN202011431800.0[P].2020-12-09.WANG Qianqian,SHI Anmei,TANG Ming,et al.A method for simultaneously detecting the concentration of multiple volatile organic acid gases in the collection environment:CN202011431800.0[P].2020-12-09.

  • 参考文献

    • [1] ALTERIO S,BARBARO S,CAMPIONE F C,et al.Microclimate management for the preservation of cultural heritage[J].Conservation Science in Cultural Heritage,2010,10(1):71-100.

    • [2] 吴雪威,闫莹,周浩,等.模拟青铜文物在乙酸气氛中的腐蚀行为[J].腐蚀与防护,2018,39(4):258-264,326.WU Xuewei,YAN Ying,ZHOU Hao,et al.Corrosion behavior of simulated bronze relics in acetic acid atmosphere[J].Corrosion & Protection,2018,39(4):258-264,326.

    • [3] 董少华,杨军昌,束家平,等.显微红外光谱透射法快速鉴别“粉状锈”[J].文物保护与考古科学,2019,31(1):111-117.DONG Shaohua,YANG Junchang,SHU Jiaping,et al.Rapid identification of powdery rust using transmission infrared microspectroscopy[J].Sciences of Conservation and Archaeology,2019,31(1):111-117.

    • [4] 周剑虹,刘成,何朝晖.出土青铜器是否带有原生“粉状锈”的探讨[J].文物保护与考古科学,2006,18(2):51-56.ZHOU Jianhong,LIU Cheng,HE Zhaohui.An investigation of the origin of powdery rust of excavated bronze[J].Sciences of Conservation and Archaeology,2006,18(2):51-56.

    • [5] 周越,闫灵通,李丽,等.X射线光谱在文物无损分析中的研究进展[J].光谱学与光谱分析,2021,41(5):1329-1335.ZHOU Yue,YAN Lingtong,LI Li,et al.The progress of the application of X-ray spectroscopy in the nondestructive analysis of relics[J].Spectroscopy and Spectral Analysis,2021,41(5):1329-1335.

    • [6] 何娟.河南博物院藏三件青铜器的科学分析[J].中原文物,2012(5):93-97.HE Juan.Scientific analysis of three bronzes in Henan Museum[J].Cultural Relics of Central China,2012(5):93-97.

    • [7] 周浩,祝鸿范,蔡兰坤.青铜器锈蚀结构组成及形态的比较研究[J].文物保护与考古科学,2005,17(3):22-27.ZHOU Hao,ZHU Hongfan,CAI Lankun.Morphology and composition of the rust on bronze artifacts[J].Sciences of Conservation and Archaeology,2005,17(3):22-27.

    • [8] LIU Wei,LI Mo,WU Na,et al.A new application of fiber optics reflection spectroscopy(FORS):Identification of “bronze disease” induced corrosion products on ancient bronzes[J].Journal of Cultural Heritage,2021,49:19-27.

    • [9] 徐来五,王勇,杨成达,等.两件中国古代青铜错金(银)器表面锈蚀产物的光谱分析[J].光谱学与光谱分析,2020,40(5):1457-1460.XU Laiwu,WANG Yong,YANG Chengda,et al.Spectral analysis of surface corrosion products of two embedded gold or silver bronze in ancient China[J].Spectroscopy and Spectral Analysis,2020,40(5):1457-1460.

    • [10] 成小林,杨琴.五种含氯铜合金腐蚀产物的拉曼光谱及扫描电镜的分析研究[J].文物保护与考古科学,2018,30(4):26-33.CHENG Xiaolin,YANG Qin.Study of five chloride-containing corrosion products from copper and bronze artifacts using Raman spectroscopy and scanning electron microscopy[J].Sciences of Conservation and Archaeology,2018,30(4):26-33.

    • [11] FISCHER A,EGGERT G,DINNEBIER R,et al.When glass and metal corrode together,Ⅴ:sodium copper formate[J].Studies in Conservation,2018,63(6):342-355.

    • [12] FISCHER A,EGGERT G,STELZNER J.When glass and metal corrode together,Ⅵ:chalconatronite[J].Studies in Conservation,2020,65(3):152-159.

    • [13] CARTER R O,POINDEXTER B D,WEBER W H.Vibrational spectra of copper formate tetrahydrate,copper formate dihydrate and three anhydrous forms of copper formate[J].Vibrational Spectroscopy,1991,2(2-3):125-134.

    • [14] POLLARD A M,THOMAS R G,WILLIAMS P A.The synthesis and composition of georgeite and its reactions to form other secondary copper(Ⅱ)carbonates[J].Mineralogical Magazine,1991,55:163-166.

    • [15] EGGERT G,FISCHER A,DINNEBIER R E.One heritage corrosion product less:basic sodium copper carbonate[J].Heritage Science,2016,4:27:1-27:5.

    • [16] GETTENS R J,FRONDEL C.Chalconatronite:an alteration product on some ancient Egyptian bronzes[J].Studies in Conservation,1955,2(2):64-75.

    • [17] SCOTT D A.Copper and bronze in art:corrosion,colorants,conservation[M].Los Angeles:The Getty Conservation Institute,2002.

    • [18] 张月玲.从《山东滕州市博物馆馆藏青铜器保护修复方案》的编制论青铜器保护技术的继承和发展[M]//王春法.中国国家博物馆文物保护修复论文集.北京:北京时代华文书局,2019:122-135.ZHANG Yueling.Discussion on the inheritance and development of bronze ware protection technology from the compilation of Shandong Tengzhou Museum Collection Bronze Ware Protection and Restoration Plan[M]//WANG Chunfa.Proceedings on the Conservation and Restoration of Cultural Relics by the National Museum of China.Beijing:Beijing Times Chinese Press,2019:122-135.

    • [19] 马燕如.浅谈埋藏环境与青铜器的腐蚀产物[C]//文物保护研究新论(二):全国第十一届考古与文物保护化学学术研讨会论文集.北京:文物出版社,2010:105-107.MA Yanru.Discussion on burial environments and corrosion products of bronze ware[C]//New Theory on the Research of Cultural Relics Protection(2):Proceedings of the 11th National Symposium on Archaeology and Conservation Chemistry.Beijing:Cultural Relics Press,2010:105-107.

    • [20] 王辇,张然,马燕如.露天展示的四座铜雕塑清洗保护报告[M]//王春法.中国国家博物馆文物保护修复论文集.北京:北京时代华文书局,2020:90-98.WANG Nian,ZHANG Ran,MA Yanru.Cleaning and protection report of four bronze sculptures displayed in the open air[M]//WANG Chunfa.Proceedings on the Conservation and Restoration of Cultural Relics by the National Museum of China.Beijing:Beijing Times Chinese Press,2020:90-98.

    • [21] 周新光,吴来明,宋国新.木材中挥发性有机酸的SPME-GC/MS分析研究[J].文物保护与考古科学,2009,21(增刊1):30-32.ZHOU Xinguang,WU Laiming,SONG Guoxin.Analysis of volatile organic acids in woods by solid phase microextraction-gas chromatography-mass spectrometry(SPME-GC/MS)[J].Sciences of Conservation and Archaeology,2009,21(Suppl 1):30-32.

    • [22] 王荣,刘霞,施超欧,等.博物馆藏展材料中挥发性有机酸的快速采样及检测方法研究[J].环境化学,2011,30(7):1372-1373.WANG Rong,LIU Xia,SHI Chaoou,et al.Research on rapid sampling and detection methods for volatile organic acids in museum collection materials[J].Environmental Chemistry,2011,30(7):1372-1373.

    • [23] 徐方圆,解玉林,刘霞,等.文物藏展常用木材挥发性酸快速检测评价方法研究[J].文物保护与考古科学,2010,22(2):1-5.XU Fangyuan,XIE Yulin,LIU Xia,et al.Fast determination of volatile acids emitted from lumber used for the storage or display of museum objects[J].Sciences of Conservation and Archaeology,2010,22(2):1-5.

    • [24] GIBSON L T,WATT C M.Acetic and formic acids emitted ftom wood samples and their effect on selected materials in museum environments[J].Corrosion Science,2010,52(1):172-178.

    • [25] THICKETT D,ODLYHA M.Note on the identification of an unusual pale blue corrosion product from Egyptian copper alloy artifacts[J].Studies in Conservation,2000,45(1):63-67.

    • [26] TRENTELMAN K,STODULSKI L,SCOTT D,et al.The characterization of a new pale blue corrosion product found on copper alloy artifacts[J].Studies in Conservation,2002,47(4):217-227.

    • [27] DINNEBIER R E,RUNCˇEVSKI T,FISCHER A,et al.Solid-state structure of a degradation product frequently observed on historic metal objects[J].Inorganic Chemistry,2015,54(6):2638-2642.

    • [28] 王全玉.馆藏金属器物上浅蓝色铜锈蚀产物的辨别与成因分析[J].文物保护与考古科学,2020,32(6):117-125.WANG Quanyu.Identification and interpretation of pale blue copper corrosion products formed on metal objects in museum collections[J].Sciences of Conservation and Archaeology,2020,32(6):117-125.

    • [29] 李沫,杨琴,吴娜,等.馆藏新石器时期彩陶鼓的脱盐保护.[M]//王春法.中国国家博物馆文物保护修复论文集.北京:北京时代华文书局,2020:36-44.LI Mo,YANG Qin,WU Na,et al.Desalination protection of painted pottery drums in the Neolithic period[M]//WANG Chunfa.Proceedings on the Conservation and Restoration of Cultural Relics by the National Museum of China.Beijing:Beijing Times Chinese Press,2020:90-98.

    • [30] 王倩倩,石安美,唐铭,等.一种同时检测馆藏环境中多种挥发性有机酸气体浓度的方法:CN202011431800.0[P].2020-12-09.WANG Qianqian,SHI Anmei,TANG Ming,et al.A method for simultaneously detecting the concentration of multiple volatile organic acid gases in the collection environment:CN202011431800.0[P].2020-12-09.

  • 您是第位访问者
    主办单位:上海博物馆 编辑出版:《文物保护与考古科学》编辑委员会
    地址:上海市徐汇区龙吴路1118号,上海博物馆文物保护科技中心,《文物保护与考古科学》编辑部
    电话:021-54362886 传真:021-54363740 E-mail:wwbhykgkx@163.com
    文物保护与考古科学 ® 2024 版权所有
    沪ICP备10003390号-3
    沪公网安备 31010102005301号
    关闭