en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

付迎春(1993—),女,北京科技大学科学技术史专业博士研究生,研究方向为文物中有机质材料研究,E-mail:bullet_1@163.com

通讯作者:

魏书亚,北京科技大学教授,研究方向为文物及文物保护中的有机质材料研究,E-mail:sywei66@hotmail.com

中图分类号:K876.7

文献标识码:A

文章编号:1005-1538(2022)05-0022-10

DOI:10.16334/j.cnki.cn31-1652/k.20211002294

参考文献 1
FU Yingchun,CHEN Zifan,ZHOU Songluan,et al.Comparative study of the materials and lacquering techniques of the lacquer objects from Warring States Period China[J].Journal of Archaeological Science,2020,144:105060.
参考文献 2
HAO Xinying,WU Hao,ZHAO Yang,et al.Analysis on the composition/structure and lacquering techniques of the coffin of Emperor Qianlong excavated from the Eastern Imperial Tombs[J].Scientific Reports,2017,7:8446.
参考文献 3
WANG Na,ZHANG Tong,MIN Junrong,et al.Analytical investigation into materials and technique:carved lacquer decorated panel from Fuwangge in the Forbidden City of Qianlong Period,Qing Dynasty[J].Journal of Archaeological Science:Reports,2018,17:529-537.
参考文献 4
HAN B,VIAL J,SAKAMOTO S,et al.Identification of traditional East Asian handmade papers through the multivariate data analysis of pyrolysis-GC/MS data[J].Analyst,2019,144(4):1230-1244.
参考文献 5
HAN Bin,NIANG Jijia,RAO Huiyun,et al.Paper fragments from the Tibetan Samye Monastery:clues for an unusual sizing recipe implying wheat starch and milk in early Tibetan papermaking[J].Journal of Archaeological Science:Reports,2021,36:102793.
参考文献 6
YAO Na,WEI Shuya.Characterization and identification of traditional Chinese handmade paper via pyrolysis-gas chromatography-mass spectrometry[J].Bioresources,2021,16(2):3942-3951.
参考文献 7
蒋建荣,魏书亚,陈百发.清代皇家建筑彩画所用胶结材料的分析研究[J].文物,2020(5):89-96.JIANG Jianrong,WEI Shuya,CHEN Baifa.Study on binding materials used in royal architectural color paintings in the Qing Dynasty[J].Cultural Relics,2020(5):89-96.
参考文献 8
和玲,聂麦茜,CHIAVARI G.热裂解气相色质谱应用于古代壁画中油类黏合剂的分析[J].西安交通大学学报,2006,40(10):1134-1138.HE Ling,NIE Maiqian,CHIAVARI G.Pyrolysis gas chromatography-mass spectrometry applied to identification of oils in ancient paintings[J].Journal of Xi’an Jiaotong University,2006,40(10):1134-1138.
参考文献 9
和玲,梁国正.热裂解气相色-质谱在文物保护和艺术品研究中的应用[J].文物保护与考古科学,2003,15(1):55-60.HE Ling,LIANG Guozheng.Application of pyrolysis gas chromatography-mass spectrometry in the conservation and investigation of art objects[J].Sciences of Conservation and Archaeology,2003,15(1):55-60.
参考文献 10
HAN Huarui,WEI Shuya,YANG Jun,et al.Characterization of the residues in Han Dynasty bronze lamps by pyrolysis-gas chromatography-mass spectrometry[J].Heritage Science,2019,7(1):37.
参考文献 11
韩化蕊,魏书亚,静永杰,等.THM-Py-GC/MS分析内蒙古伊和淖尔出土照明燃料[J].光谱学与光谱分析,2019,39(12):3868-3872.HAN Huarui,WEI Shuya,JING Yongjie,et al.Analysis and research of residues from iron lamp unearthed in Yihenaoer,Inner Mongolia by THM-Py-GC/MS[J].Spectroscopy and Spectral Analysis,2019,39(12):3868-3872.
参考文献 12
蒋建荣,潘付生,薛方,等.洛阳汉墓出土仙药的科技研究[J].中国科技史杂志,2019,40(2):127-136,124.JIANG Jianrong,PAN Fusheng,XUE Fang,et al.Scientific study of the immortal medicine excavated from a Han Dynasty Tomb in Luoyang[J].The Chinese Journal for the History of Science and Technology,2019,40(2):127-136,124.
参考文献 13
ORSINI S,PARLANTI F,BONADUCE I.Analytical pyrolysis of proteins in samples from artistic and archaeological objects[J].Journal of Analytical and Applied Pyrolysis,2017,124:643-657.
参考文献 14
长北.髹饰录析解[M].南京:江苏凤凰美术出版社,2017:5.CHANG Bei.Interpretation of Xiu Shi Lu[M].Nanjing:Jiangsu Phoenix Fine Arts Publishing House,2017:5.
参考文献 15
张坤,张秉坚,方世强.中国传统血料灰浆的应用历史和科学性[J].文物保护与考古科学,2013,25(2):94-102.ZHANG Kun,ZHANG Bingjian,FANG Shiqiang.The application history and scientific nature of blood-based materials in traditional Chinese mortar[J].Sciences of Conservation and Archaeology,2013,25(2):94-102.
参考文献 16
刘敦桢.石轴柱桥述要(西安灞浐丰三桥)[M]//刘敦桢.刘敦桢文集(二).北京:中国建筑工业出版社,1984:1-34.LIU Dunzhen.Summary of shi zhou zhu qiao(Ba,Chan and Feng Bridges in Xi’an)[M]//LIU Dunzhen.Collected works of Liu Dunzhen(Ⅱ).Beijing:China Architecture & Building Press,1984:1-34.
参考文献 17
宋玉兰.古代壁画胶结材料研究综述[J].文物鉴定与鉴赏,2019(14):86-87.SONG Yulan.A summary of the research on binding materials of ancient paintings[J].Identification and Appreciation to Cultural Relics,2019(14):86-87.
参考文献 18
王世襄.髹饰录解说[M].北京:生活·读书·新知三联书店,2013:24.WANG Shixiang.Interpretation of Xiu Shi Lu[M].Beijing:SDX Joint Publishing Company,2013:24.
参考文献 19
BONADUCE I,BLAENSDORF C,DIETEMANN P,et al.The binding media of the polychromy of Qin Shihuang’s Terracotta Army[J].Journal of Cultural Heritage,2008,9(1):103-108.
参考文献 20
安晶晶,闫宏涛.古代彩绘颜料胶结材料MALDI-TOF-MS分析表征(Ⅰ)[J].科学通报,2013,58(3):211-217.AN Jingjing,YAN Hongtao.The binding media of ancient polychromy by matrix-assisted laser desorption/ionization time-of-fight mass spectrometry(Ⅰ)[J].Chinese Science Bulletin,2013,58(3):211-217.
参考文献 21
WEI Shuya,MA Qinglin,SCHREINER M.Scientific investigation of the paint and adhesive materials used in the Western Han dynasty polychromy terracotta army,Qingzhou,China[J].Journal of Archaeological Science,2012,39(5):1628-1633.
参考文献 22
WEI Shuya,SCHREINER M,GUO Hong,et al.Scientific investigation of the materials in a Chinese Ming Dynasty wall painting[J].International Journal of Conservation Science,2010,1(2):99-112.
参考文献 23
WEI Shuya,FANG Xiaoyang,YANG Jun,et al.Identification of the materials used in an Eastern Jin Chinese ink stick[J].Journal of Cultural Heritage,2012,13(4):448-452.
参考文献 24
周文晖,王丽琴,樊晓蕾,等.博格达汗宫古建柱子油饰制作工艺及材料研究[J].内蒙古大学学报(自然科学版),2010,41(5):522-526.ZHOU Wenhui,WANG Liqin,FAN Xiaolei,et al.Study on the making techniques and materials of oil-samples from a column in Bogda Khan Palace Museum[J].Journal of Inner Mongolia University(Natural Science Edition),2010,41(5):522-526.
参考文献 25
BONADUCE I,ANDREOTTI A.Py-GC/MS of organic paint binders[M]//COLOMBINI M P,MODUGNO F.Organic Mass Spectrometry in Art and Archaeology.Chichester:John Wiley & Sons,Ltd.,2009:303-326.
参考文献 26
CHIAVARI G,BOCCHINI P,GALLETTI G C.Rapid identification of binding media in paintings using simultaneous pyrolysis methylation gas chromatography[J].Science and Technology for Cultural Heritage,1992,1(2):153-158.
参考文献 27
BOCCHINI P,TRALDI P.Organic mass spectrometry in our cultural heritage[J].Journal of Mass Spectrometry,1998,33:1053-1062.
参考文献 28
王娜,谷岸,闵俊嵘,等.文物中常用蛋白质类胶结材料的热裂解-气相色谱/质谱识别[J].分析化学,2020,48(1):90-96.WANG Na,GU An,MIN Junrong,et al.Identification of protein binding media used in Chinese cultural relics by pyrolysis-gas chromatography/mass spectrometry[J].Chinese Journal of Analytical Chemistry,2020,48(1):90-96.
参考文献 29
SCHILLING M R,HEGINBOTHAM A,VAN KEULEN H,et al.Beyond the basics:a systematic approach for comprehensive analysis of organic materials in Asian lacquers[J].Studies in Conservation,2016,61(Suppl 3):3-27.
参考文献 30
和玲,容波,任萌,等.盖蒂保护研究所的亚洲漆快速识别方法[J].文物保护与考古科学,2020,32(3):125-128.HE Ling,RONG Bo,REN Meng,et al.Fast identification method for Asian lacquer developed by Getty Conservation Institute[J].Sciences of Conservation and Archaeology,2020,32(3):125-128.
参考文献 31
晋江市佛教协会.闽南名刹,龙山祖庭——记福建省晋江市安海龙山寺[J].中国宗教,2019(10):77-79.Jinjiang Buddhist Association.Longshan Temple:a famous temple in Anhai,Jinjiang,southern Fujian[J].China Religion,2019(10):77-79.
参考文献 32
KURATA S,ICHIKAWA K.Identification of natural leather microstrips by pyrolysis gas chromatography/mass spectrometry[J].Analytical Chemistry,2008,57(7):563-569.
参考文献 33
DUTTA S,KUMAR S,SINGH H,et al.Chemical evidence of preserved collagen in 54-million-year-old fish vertebrae[J].Palaeontology,2020,63(2):195-202.
参考文献 34
CHIAVARI G,PRATI S.Analytical pyrolysis as diagnostic tool in the investigation of works of art[J].Chromatographia,2003,58(9-10):543-554.
参考文献 35
COLOMBINI M P,GARUTIER G.GC/MS in the characterisation of protein paint binders[M]//COLOMBINI M P,MODUGNO F.Organic Mass Spectrometry in Art and Archaeology.Chichester:John Wiley & Sons,Ltd.,2009:237-259.
目录contents

    摘要

    利用在线甲基化水解-裂解气相色谱质谱(THM-Py-GC/MS)技术对古代壁画、彩绘等文物中常用的骨胶、皮胶、鱼鳔胶、蛋清、蛋黄和猪血等六种蛋白质类胶结材料进行分析,采用盖蒂保护研究所开发的RAdICAL系统对谱图进行解析,总结了每类材料的特征裂解产物。研究表明,吡咯类化合物,特别是吡咯、二吡咯二酮和哌嗪二酮类化合物可以作为骨胶和皮胶的识别组分,鱼鳔胶的识别组分除了上述吡咯类化合物之外,还包括胆固醇类化合物。吲哚类、血/蛋清标记物、磷酸三甲酯、脯氨酸类化合物是蛋清的识别组分。除了含有蛋清的4种识别成分之外,猪血的识别成分还包括胆固醇类化合物。蛋黄的识别组分是磷酸三甲酯、蛋黄标记物和胆固醇类化合物。最后利用主成分分析法(PCA)对福建省泉州市安海县龙山寺千手观音佛像上脱落的膜状残片的数据和六种蛋白质类胶结材料的数据进行解读,确定了膜状残片的蛋白质类有机材料为动物胶(骨胶或皮胶)和蛋清,证明PCA是一种有效的降维和可视化方法。本研究利用PCA技术对THM-Py-GC/MS数据进行分析解读,且结果可信,为之后该技术的发展提供新的契机。

    Abstract

       Proteinaceous binding media, including animal glue, egg white, egg yolk and porcine blood, were widely used for organic cultural relics in China. Gas chromatography/mass spectrometry (GC/MS) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) are often used for their identification. According to literature reviews, marker compounds of animal glue and egg yolk are relatively clear, but those of egg white and porcine blood are still controversial. However, there is no further subdivision of animal glue in the literature, and marker compounds of egg yolk are consistent with other materials commonly used for ancient organic objects, such as wax, oil and lacquer, which makes it difficult to identify egg yolk in complex ancient objects.

       In our study, thermally assisted hydrolysis-methylation pyrolysis-gas chromatography/mass spectrometry (THM-Py-GC/MS) was used to analyze six kinds of proteinaceous binding media—bone glue, hide glue, fish maw glue, egg white, egg yolk and porcine blood—which were commonly used for ancient murals, paintings and other cultural relics. Their spectra were analyzed according to the RAdICAL system developed by the Getty Conservation Institute, and their characteristic pyrolysis products were also summarized. The results show that 1) pyrroles, especially pyrrole, diketodipyrrole and diketopiperazines can be used as recognition components of bone glue and hide glue; 2) besides pyrroles mentioned above, recognition components of fish maw glue also include cholesterols; 3) indoles, blood/egg white marker compounds, prolines and trimethyl phosphate are recognition components of egg white and porcine blood, and cholesterol compounds are also recognition components of porcine blood in addition to the above four kinds of compounds; 4) recognition components of egg yolk are trimethyl phosphate, egg yolk marker and cholesterols. According to this method and data interpretation, the six common proteinaceous binding materials in cultural relics were successfully recognized and distinguished, which gives support to solving archaeological problems and conserving cultural relics. Finally, principal component analysis (PCA) was used to interpret data of the six proteinaceous binding materials and a piece of film from a sculpture of Avalokitesvara Bodhisattva of Longshan Temple in Anhai County, Quanzhou, Fujian Province. It was determined that the proteinaceous materials of the film were animal glue (bone glue or hide glue) and egg white. In our study, PCA was used to interpret THM-Py-GC/MS data and presented a credible result in the field of archaeometry and cultural relic conservation.

       This study, to a certain extent, has solved the problem of identifying proteinaceous binding media in organic cultural objects. Six kinds of proteinaceous binding media were successfully identified using THM-Py-GC/MS, and their data were reinterpreted using PCA. Visual classification of the six kinds of proteinaceous binding media was realized. The methods were successfully applied to an ancient Bodhisattva sculpture, providing a new opportunity for their development.

  • 0 引言

  • 近年来,热裂解气相色谱质谱技术(Py-GC/MS)在有机质文物研究领域的应用正处于起步阶段,国内学者利用该技术对漆器[1-3]、纸张[4-6]、彩绘[7-9]、残留物[10-12]等文物中的有机材料进行分析,尤其是四甲基氢氧化铵等衍生化试剂的引入,使得一些由极性分子组成的物质如干性油、蛋白质的检出效率大大提高。胶结材料是古代文物中应用普遍的一类有机质材料,用以增强文物中不同材料之间的黏结力和内聚力,是彩绘陶器、泥塑、壁画、古建油饰、彩画等文物的重要组成部分。蛋白质类材料作为常见的胶结材料,在我国的有机质文物中应用广泛,是有机质文物的研究热点之一。常见的蛋白类胶结材料包括动物胶、鸡蛋(蛋清和蛋黄)、血料等。动物胶包括皮胶、骨胶、鱼鳔胶、鹿角胶,是通过动物骨骼、皮肤、软骨等组织煮沸而成,主要由变性和部分水解的胶原蛋白组成,动物胶的肽链中甘氨酸和脯氨酸的含量较高,并且有羟脯氨酸的存在,羟脯氨酸是动物蛋白区分于其他蛋白质特征的氨基酸[13]。皮胶价格便宜,一般用来粘合木构件,鱼鳔胶以鱼脬制成,性软,黏连性好,优于皮胶;鹿角胶昂贵,不常见[14]。血料是指利用动物血制成的胶结糊状液体,有一定的黏结力,在建筑、漆工艺中常与石灰、砖灰等灰料搅拌成血料灰浆,应用在彩画地仗层、漆器漆灰层等[15]。古代血料一般指猪血,其他动物血,如牛羊血等经加工也可用作血料,道光十四年重建灞桥的拦墙石上,“俱用糯米汁、牛血拌石灰嵌住,接缝加铁锭”[16]。鸡蛋(全蛋、蛋清、蛋黄)在生活中较为普遍,成本较低,提炼技术简便,是古代常用的胶结材料之一[17]。在西方油画中较为普遍,如蛋彩画(Tempera)是采用蛋清或蛋黄混合颜料绘制而成。国内也有相关应用,《髹饰录解说》中曾有使用鸡子清与生漆熬制熟漆用作胶结材料的记载:“······鸡子清两个,铅粉一钱,研,清生漆六两······”“······以乌鸡子两个,取清搅碎,调粉,同入瓦器,拌和令匀,绵滤过。”“用上等面漆······临时入鸡子清拌匀······”[18]。Bonaduce等[19]利用气相色谱质谱技术(GCMS)发现秦兵马俑彩绘中的胶结材料为鸡蛋,同时认为存在其他胶结材料,安晶晶等[20]通过基质辅助激光解析电离飞行时间质谱技术(MALDI-TOF-MS)否定了鸡蛋的可能性,认为是其他类型的胶结材料,由此可见鉴定古代蛋白质材料的困难。魏书亚团队利用热裂解气相色谱质谱技术(Py-GC/MS)分析了青州香山西汉墓出土的陶俑彩绘[21]、明代大昭寺壁画[22]、东晋墨[23]等文物,发现都使用了动物胶作为胶结材料或添加剂。周文晖等[24]利用血色原晶实验对博格达汗宫柱子的彩绘材料进行了研究,发现彩绘地仗中加入了血料。

  • 意大利比萨大学的Bonaduce与Andreotti[25]列出了文献中几种蛋白质类胶结材料的裂解产物,发现即使使用了相同的衍生化试剂,同一种蛋白质类胶结材料的特征裂解产物也并不完全一致。但总体来说,某些蛋白质类胶结材料的特征裂解产物还是有规律可循,比如动物胶的特征裂解产物是吡咯及吡咯衍生物,蛋黄的特征裂解产物为脂肪酸(Chiavari等[26]认为是硬脂酸、油酸;Bocchini等[27]认为是棕榈酸和硬脂酸)。王娜等[28]对动物胶、猪血、蛋清和蛋黄四种蛋白质类胶结材料进行了Py-GC/MS分析和裂解成分归类,认为蛋黄的裂解产物主要是脂肪酸,可以与其他三种材料明显区分;再通过吡咯类、腈类、脯氨类及吲哚类四种裂解产物的含量分布来鉴别动物胶、猪血和蛋清:动物胶的主要成分为吡咯类,猪血的主要成分为前三种,均约为20%,蛋清中四种成分含量相差较小,分布较为均匀。盖蒂保护研究所Schilling等[29-30]经过长期的研究和经验积累,建立了RAdICAL系统,实现了对文物中大漆、油料、蛋白质、树脂、淀粉等有机物的快速识别与分类。Schilling[29]认为可以通过胆固醇类和血的特征裂解产物来鉴别文物样品中的血料。

  • 可以看出,血料、蛋清的特征裂解产物仍存在争议,而动物胶和蛋黄的特征裂解产物比较容易判断,分别是吡咯类化合物和脂肪酸。但是,除了蛋黄,油、蜡、漆等很多有机材料中都含有大量的脂肪酸,因此无法仅仅根据脂肪酸来鉴别文物样品中的蛋黄。另外,动物胶种类并不单一,包括皮胶、骨胶、鱼鳔胶。鉴于此,本研究拟通过对蛋清、蛋黄、猪血、骨角、皮胶和鱼鳔胶等六种蛋白质类胶结材料的裂解产物进行分类比较。

  • 本研究选用了六种蛋白质类胶结材料(蛋清、蛋黄、猪血、骨角、皮胶和鱼鳔胶),利用四甲基氢氧化铵(TMAH)在线衍生化的Py-GC/MS技术以及RAdICAL系统对它们进行成分识别。另外本研究还将引入主成分分析法(PCA),对THM-Py-GC/MS数据进行归类和比较。

  • 1 材料和方法

  • 1.1 实验材料

  • 市售鸡蛋,对其敲碎和剥离,得到蛋黄和蛋清;市售猪血,新鲜不掺水;骨胶、皮胶、鱼鳔胶由维也纳艺术史博物馆提供,其中骨胶和皮胶为猪骨胶和猪皮胶。将蛋黄、蛋清、猪血三种蛋白质类胶结材料涂抹于载玻片上,并在室温环境下进行放置,成膜后继续放置一个月,至质量不损失,将老化后的膜视作参考样品。骨胶、皮胶和鱼鳔胶直接取样分析。福建省泉州市安海县龙山寺千手观音佛像上脱落的膜状残片为本研究的文物样品,将用来验证方法的可行性。龙山寺始建于隋皇泰年间(公元618—619年),唐代鲁国公程咬金、清代靖海侯施琅等均进行过扩充和修缮。此后虽屡有重修,但其布局和功能基本保留[31]。寺内供奉的千手千眼观音佛像为一根巨木雕就,通高4.2m,佛像通身贴满纯金箔,样品为从佛像上掉落的残片,具体脱落部位已不可考,但仍可以从中一窥佛像金箔的胶结材料。

  • 1.2 热裂解气相色谱质谱仪(Py-GC/MS)测试方法

  • 热裂解气相色谱质谱仪使用PY-3030D热裂解仪(Frontier Lab)与GC/MS-QP2010Ultra气相色谱质谱仪(Shimadzu)。色谱柱型号为UA+-5(Frontier Lab),固定相为5%二甲基二苯基聚硅氧烷,内径0.25mm,膜厚0.25 μm,柱长30m。热裂解炉温度为600℃、裂解炉接口温度为300℃,进样口温度为250℃。柱箱的初始温度为50℃,而后以10℃/min的速率升温至280℃并维持20min。载气为氦气,入口压力100kPa,分流比1∶100,流量控制设置为恒压模式。质谱仪采用EI电离,电离源能量为70eV,扫描范围为50~750,离子源温度为200℃,质谱与气相色谱的接口温度为250℃。化合物的鉴定基于美国国家标准与技术研究所(NIST)开发的AMDIS程序和盖蒂保护研究所的Michael R.Schilling等创建的RAdICAL系统。

  • 将约0.2mg样品置于样品杯中,然后向样品杯中加入3 μL的25%四甲基氢氧化铵水溶液(TMAH,分析纯,购于国药集团化学试剂有限公司)。样品杯由自动进样器进入裂解炉,样品在600℃高温下立即裂解,裂解气体进入气相色谱,GC/MS程序自动开启。

  • 2 结果与讨论

  • 2.1 六种蛋白质类胶结材料的THM-Py-GC/MS分析

  • 采用THM-Py-GC/MS法对骨胶、皮胶、鱼鳔胶、蛋清、蛋黄、猪血六种蛋白质类胶结材料进行了分析,总离子色谱图见图1。将主要裂解成分标于图中,包括吡咯类、蛋白质标记物、脂肪酸甲酯、吲哚类、脯氨酸类、血/蛋清标记物、胆固醇类等物质,分别以Py、FA、Pr、I、A、B、C等字母进行区分,对应的化合物列于表1。

  • 图1 六种蛋白质类胶结材料的总离子流色谱图

  • Fig.1 Total ion chromatograms of six proteinaceous binding media

  • 表1 六种蛋白质类胶结材料的主要裂解产物及其主要离子峰

  • Table1 Main pyrolytic compounds and corresponding main ions of six proteinaceous binding media

  • (续表1)

  • 注:主要离子峰强度从强到弱排列,加粗数字为分子离子峰。

  • 2.2 动物胶的裂解及识别

  • 骨胶和皮胶的裂解成分相似,主要包括吡咯类(Py)、脂肪酸(FA)、蛋白质类(Pr)、少量的脯氨酸类(A)和甲苯。鱼鳔胶的裂解产物除了包括上述物质外,还包括胆固醇类,因此胆固醇类化合物可以作为鱼鳔胶与骨胶、皮胶的区分点。

  • 动物胶的特征裂解产物是吡咯类化合物:1-甲基-1H-吡咯(Py1)、吡咯(Py2)、3-甲基-1H-吡咯(Py3)、1-甲基吡咯烷-2,5-二酮(Py4)、1-甲基吡咯-2-羧酸甲酯(Py5)、哌嗪二酮类(Py6,Py8-10)和二吡咯二酮(Py7)。二吡咯二酮及哌嗪二酮类化合物在吡咯类组分中含量较高,它们来源于胶原蛋白中的羟脯氨酸、甘氨酸、脯氨酸、丙氨酸等形成的二肽环化或重排后的物质[32-34]。哌嗪二酮类化合物具有相同的基峰m/z 70,对应的选择性离子色谱图见图2。

  • 图2 动物胶的哌嗪二酮类裂解产物

  • Fig.2 Diketopiperazines in the pyrolytic compounds of animal glue

  • Py6来源于二肽(脯氨酸-丙氨酸),Py8来源于二肽(脯氨酸-甘氨酸),又名六氢-吡咯并[1,2-a]吡嗪-1,4-二酮,Py9来源于二肽(脯氨酸-脯氨酸),Py10来源于二肽(脯氨酸-羟脯氨酸),它们仅在动物胶的裂解产物中出现,而二吡咯二酮来源于二肽(羟脯氨酸-羟脯氨酸),羟脯氨酸是动物蛋白区别于其他蛋白质特征的氨基酸,因此可以将二吡咯二酮(m/z 186)和哌嗪二酮类化合物(m/z 70)与吡咯(m/z 67)一起作为动物胶的标记化合物,这个结果与文献一致[21,28]

  • 2.3 蛋清、蛋黄和猪血的裂解及识别

  • 蛋清与猪血的裂解产物具有一定的相似性,主要包括血/蛋清标记物(B)、蛋白质标记物(Pr)、脯氨酸类(A)和吲哚类(I)和少量的磷酸三甲酯,不同点在于猪血中还含有少量的胆固醇类(C)以及脂肪酸(FA)。血/蛋清标记物和蛋白质标记物的识别依据是AMDIS软件和盖蒂文物保护研究所的ESCAPE1461REV2019KJ化合物数据库。表2列出了蛋清和猪血中的裂解产物及其相对含量,可以看出,与动物胶不同,蛋清和猪血的裂解产物中含有极少量的吡咯类物质,但是含有大量的吲哚类、血/蛋清标记物和脯氨酸类化合物,以及少量的磷酸三甲酯,因此可以将它们作为蛋清和猪血的识别物质。

  • 在之前的文献中,吲哚类物质被认为是蛋清的特征裂解产物[24,35],但是本研究发现蛋清和猪血的裂解产物中都包括吲哚类物质(1,3-二甲基-1H-吲哚),因此不能仅根据吲哚类物质来判定文物中的胶结材料是蛋清。文献中通过吡咯类、腈类、脯氨类和吲哚类裂解产物的相对含量来区别动物胶、猪血和蛋清,具有非常良好的借鉴意义[28]。但考虑到热裂解气相色谱质谱技术在复杂有机物定量方面的局限性,本研究拟通过热裂解特征化合物的识别来区分蛋清和猪血。

  • 通过表2可以看出蛋清和猪血在裂解产物上最大的不同之处在于猪血中检测到了胆固醇类物质,因此可以通过裂解产物中是否存在胆固醇类物质来区分胶结材料是蛋清或猪血,即如果在文物样品的裂解产物中发现了吲哚类、血/蛋清标记物、磷酸三甲酯和脯氨酸类化合物的同时,也检测到了胆固醇类化合物,可以判断该文物中使用的胶结材料为猪血;反之,如果在文物样品的裂解产物中仅发现了吲哚类、血/蛋清标记物、磷酸三甲酯和脯氨酸类化合物,没有检测到胆固醇类化合物,则胶结材料为蛋清。

  • 蛋黄的裂解产物为脂肪酸(含量占比90.0%,其中不饱和脂肪酸占比54.3%,饱和脂肪酸占比35.7%,以下均为含量占比),磷酸三甲酯(1.6%),蛋黄标记物(1.4%),胆固醇类(7.0%),其中磷酸三甲酯来源于蛋黄中的磷脂,脂肪酸来自于蛋黄中的油脂[28]。蛋黄标记物与上述血/蛋清标记物和蛋白质裂解产物一样,由AMDIS软件和ESCAPE1461REV2019KJ化合物数据库识别,是蛋黄独有的裂解产物,可以作为蛋黄的识别物质之一。

  • 表2 蛋清和猪血中含氮裂解产物及其含量

  • Table2 Nitrogenous pyrolytic compounds of egg white and porcine blood

  • 通过上述分析可以看出,除了骨胶和皮胶难以区分,鱼鳔胶、蛋清、蛋黄和猪血是可以通过THM-Py-GC/MS技术进行识别和区分的,它们的特征裂解产物见表3。

  • 当在文物样品的裂解产物中发现了大量的吡咯类化合物,特别是吡咯(m/z 67)、二吡咯二酮(m/z 186)和哌嗪二酮类化合物(m/z 70)时,则胶结材料为骨胶或皮胶;如果裂解产物还包括胆固醇类化合物(m/z 368),则胶结材料为鱼鳔胶。

  • 当在文物样品的裂解产物中发现了吲哚类(m/z 117)、血/蛋清标记物、磷酸三甲酯和脯氨酸类化合物的同时,发现了胆固醇类化合物(m/z 368),同时没有检出蛋黄标记物,可以确定胶结材料是猪血;如果只发现了吲哚类、血/蛋清标记物、磷酸三甲酯和脯氨酸类化合物,没有胆固醇类化合物、蛋黄标记物,可以确定胶结材料是蛋清。

  • 当在文物样品的裂解产物中发现了磷酸三甲酯、蛋黄标记物和胆固醇类化合物(m/z 368),则胶结材料为蛋黄;如果裂解产物还包括吲哚类(m/z 117)、血/蛋清标记物和脯氨酸类化合物,则胶结材料可能为全蛋,即蛋清和蛋黄没有被剥离,但不排除同时使用猪血的可能性。

  • 表3 六种蛋白质类胶结材料的特征裂解产物及识别

  • Table3 Pyrolytic markers of six proteinaceous binding media

  • 注:“√”代表该物质含量较高,为特征裂解产物;“—”代表含量较低或没有检测到该物质。

  • 2.4 文物样品分析

  • 将建立的识别蛋白质类胶结材料的THM-Py-GC/MS方法、特征裂解产物和PCA模型应用到文物样品(福建省泉州市安海县龙山寺千手观音佛像上脱落的膜状残片)的分析上,验证方法和模型的可行性。

  • 佛像膜状残片的总离子流色谱图见图3,蛋白质胶结材料相关的主要裂解成分标于图中,包括吡咯类、蛋白质标记物、吲哚类、脯氨酸类、血/蛋清标记物等物质,吡咯类物质是动物胶的裂解产物,吲哚类、脯氨酸类、磷酸三甲酯、血/蛋清标记物是蛋清的裂解产物,而且在样品中没有检测到胆固醇类物质,因此该样品的蛋白质类组分应为动物胶(骨胶或皮胶)和蛋清。对两种胶结材料的裂解产物的峰面积进行计算,发现动物胶(骨胶或皮胶)的裂解产物峰面积在所有样品裂解产物峰面积中占比10.70%,蛋清的裂解产物峰面积占比17.29%,据此推断样品中动物胶的含量小于蛋清。

  • 图3 佛像膜状残片的总离子流色谱图

  • Fig.3 Total ion chromatogram of a piece of film from a Buddhist sculpture

  • 本研究还使用了主成分分析方法(PCA)对六种蛋白质类胶结材料和佛像膜状残片的裂解产物的数据进行处理,变量为蛋白质类胶结材料的特征裂解产物(Py1-10、Pr8、A1-4、I1、B5-9、B11、C1-4、磷酸三甲酯和蛋黄标记物),共28个变量。共收集了37个样品数据(其中骨胶、皮胶、鱼鳔胶、蛋清、蛋黄、猪血各6个,佛像膜状残片1个)。若某样品中含有某个变量成分,则数据为1,若不含有该变量,则数据为0。通过比较不同蛋白质类胶结材料中含有的特征裂解产物的种类来评估样本之间的相似度。PCA分析是一种非常强大的模式识别技术,是首选的多变量方法,它可以将n维模式中包含的冗余信息减少到两个或三个变量(主成分),而方差损失有限[35],且将降维后的数据进行平行坐标可视化展示。从主成分的载荷图(图4b)可以看出,1号主成分(PC1)占了47.1%贡献百分比,2号主成分(PC2)占了14.6%贡献百分比,28个特征裂解产物中有15种与1号主成分(PC1)具有高度相关性,包括Py1-3、Py5-10、A2-4、B5、B6、磷酸三甲酯,因此由PC1区分的样品集的差异主要体现为是否含有这15种物质。剩余13种物质与2号主成分(PC2)具有较高的相关性,因此在PC2上表现出差异的样品集主要与这13种物质相关。图4a中显示了样本在PC1和PC2两种主成分上的得分图,可以看出骨胶/皮胶、鱼鳔胶、猪血/蛋清、蛋黄的置信区间有明显的差异性,膜状残片的数据落在了蛋清的置信区间内,表明膜状残片中蛋白质类胶结材料含有蛋清。考虑到样品中还存在吡咯类裂解产物,而且膜状残片的数据偏向动物胶(骨胶或皮胶)的置信区间,因此膜状残片中的蛋白质胶结材料为动物胶(骨胶或皮胶)和蛋清。

  • 图4 六种蛋白质类胶结材料和佛像膜状残片的特征裂解产物的主成分得分图(左)和载荷图(右)

  • Fig.4 PCA score plot of the pyrolytic markers of six proteinaceous binding media and a piece of film from a Buddhist sculpture

  • 除了蛋白质胶结材料外,样品中检测到了一系列的单元脂肪酸、二元脂肪酸,根据壬二酸(2FA9)与棕榈酸(FA16)的比值(1.02),以及棕榈酸(FA16)与硬脂酸(FA18)的比值(1.30),可以推断样品中含有桐油;另外样品中还检测到了一系列松香的裂解产物,包括脱氢枞酸甲酯(DHA)、7-甲氧基四脱氢枞酸甲酯、15-甲氧基脱氢枞酸甲酯、7-氧脱氢枞酸甲酯(7-Oxo-DHA)、15-羟基-7-氧脱氢枞酸甲酯。因此除了动物胶(骨胶/皮胶)、蛋清外,该样品中的有机材料还包括桐油和松香。

  • 3 结论

  • 本研究利用THM-Py-GC/MS技术对古代油饰、壁画等文物中常用的骨胶、皮胶、鱼鳔胶、蛋清、蛋黄和猪血等六种蛋白质类胶结材料进行分析,并总结了它们的特征裂解产物。骨胶和皮胶的特征裂解产物是吡咯类化合物,特别是吡咯、二吡咯二酮和哌嗪二酮类化合物,鱼鳔胶的特征裂解产物除了上述吡咯类化合物之外,还包括胆固醇类化合物。蛋清的特征裂解产物包括吲哚类、血/蛋清标记物、磷酸三甲酯、脯氨酸类化合物,而猪血的特征裂解产物除了包括蛋清的4种特征裂解产物外,还包括胆固醇类化合物。蛋黄的特征裂解产物是磷酸三甲酯、蛋黄标记物和胆固醇类化合物。本研究随后利用PCA技术对六种蛋白质材料的特征裂解产物进行了识别和区分,福建省泉州市安海县龙山寺千手观音佛像上脱落的膜状残片中动物胶和蛋清的识别,验证了所建立方法的可行性。

  • 致谢:美国盖蒂保护研究所的Michael R.Schilling教授在RAdICAL系统的使用上提供了强有力的技术支持,北京科技大学科技史与文化遗产研究院2020级博士研究生刘娜妮在主成分分析方法的使用上给予了很多帮助,在此表示诚挚的谢意。

  • 参考文献

    • [1] FU Yingchun,CHEN Zifan,ZHOU Songluan,et al.Comparative study of the materials and lacquering techniques of the lacquer objects from Warring States Period China[J].Journal of Archaeological Science,2020,144:105060.

    • [2] HAO Xinying,WU Hao,ZHAO Yang,et al.Analysis on the composition/structure and lacquering techniques of the coffin of Emperor Qianlong excavated from the Eastern Imperial Tombs[J].Scientific Reports,2017,7:8446.

    • [3] WANG Na,ZHANG Tong,MIN Junrong,et al.Analytical investigation into materials and technique:carved lacquer decorated panel from Fuwangge in the Forbidden City of Qianlong Period,Qing Dynasty[J].Journal of Archaeological Science:Reports,2018,17:529-537.

    • [4] HAN B,VIAL J,SAKAMOTO S,et al.Identification of traditional East Asian handmade papers through the multivariate data analysis of pyrolysis-GC/MS data[J].Analyst,2019,144(4):1230-1244.

    • [5] HAN Bin,NIANG Jijia,RAO Huiyun,et al.Paper fragments from the Tibetan Samye Monastery:clues for an unusual sizing recipe implying wheat starch and milk in early Tibetan papermaking[J].Journal of Archaeological Science:Reports,2021,36:102793.

    • [6] YAO Na,WEI Shuya.Characterization and identification of traditional Chinese handmade paper via pyrolysis-gas chromatography-mass spectrometry[J].Bioresources,2021,16(2):3942-3951.

    • [7] 蒋建荣,魏书亚,陈百发.清代皇家建筑彩画所用胶结材料的分析研究[J].文物,2020(5):89-96.JIANG Jianrong,WEI Shuya,CHEN Baifa.Study on binding materials used in royal architectural color paintings in the Qing Dynasty[J].Cultural Relics,2020(5):89-96.

    • [8] 和玲,聂麦茜,CHIAVARI G.热裂解气相色质谱应用于古代壁画中油类黏合剂的分析[J].西安交通大学学报,2006,40(10):1134-1138.HE Ling,NIE Maiqian,CHIAVARI G.Pyrolysis gas chromatography-mass spectrometry applied to identification of oils in ancient paintings[J].Journal of Xi’an Jiaotong University,2006,40(10):1134-1138.

    • [9] 和玲,梁国正.热裂解气相色-质谱在文物保护和艺术品研究中的应用[J].文物保护与考古科学,2003,15(1):55-60.HE Ling,LIANG Guozheng.Application of pyrolysis gas chromatography-mass spectrometry in the conservation and investigation of art objects[J].Sciences of Conservation and Archaeology,2003,15(1):55-60.

    • [10] HAN Huarui,WEI Shuya,YANG Jun,et al.Characterization of the residues in Han Dynasty bronze lamps by pyrolysis-gas chromatography-mass spectrometry[J].Heritage Science,2019,7(1):37.

    • [11] 韩化蕊,魏书亚,静永杰,等.THM-Py-GC/MS分析内蒙古伊和淖尔出土照明燃料[J].光谱学与光谱分析,2019,39(12):3868-3872.HAN Huarui,WEI Shuya,JING Yongjie,et al.Analysis and research of residues from iron lamp unearthed in Yihenaoer,Inner Mongolia by THM-Py-GC/MS[J].Spectroscopy and Spectral Analysis,2019,39(12):3868-3872.

    • [12] 蒋建荣,潘付生,薛方,等.洛阳汉墓出土仙药的科技研究[J].中国科技史杂志,2019,40(2):127-136,124.JIANG Jianrong,PAN Fusheng,XUE Fang,et al.Scientific study of the immortal medicine excavated from a Han Dynasty Tomb in Luoyang[J].The Chinese Journal for the History of Science and Technology,2019,40(2):127-136,124.

    • [13] ORSINI S,PARLANTI F,BONADUCE I.Analytical pyrolysis of proteins in samples from artistic and archaeological objects[J].Journal of Analytical and Applied Pyrolysis,2017,124:643-657.

    • [14] 长北.髹饰录析解[M].南京:江苏凤凰美术出版社,2017:5.CHANG Bei.Interpretation of Xiu Shi Lu[M].Nanjing:Jiangsu Phoenix Fine Arts Publishing House,2017:5.

    • [15] 张坤,张秉坚,方世强.中国传统血料灰浆的应用历史和科学性[J].文物保护与考古科学,2013,25(2):94-102.ZHANG Kun,ZHANG Bingjian,FANG Shiqiang.The application history and scientific nature of blood-based materials in traditional Chinese mortar[J].Sciences of Conservation and Archaeology,2013,25(2):94-102.

    • [16] 刘敦桢.石轴柱桥述要(西安灞浐丰三桥)[M]//刘敦桢.刘敦桢文集(二).北京:中国建筑工业出版社,1984:1-34.LIU Dunzhen.Summary of shi zhou zhu qiao(Ba,Chan and Feng Bridges in Xi’an)[M]//LIU Dunzhen.Collected works of Liu Dunzhen(Ⅱ).Beijing:China Architecture & Building Press,1984:1-34.

    • [17] 宋玉兰.古代壁画胶结材料研究综述[J].文物鉴定与鉴赏,2019(14):86-87.SONG Yulan.A summary of the research on binding materials of ancient paintings[J].Identification and Appreciation to Cultural Relics,2019(14):86-87.

    • [18] 王世襄.髹饰录解说[M].北京:生活·读书·新知三联书店,2013:24.WANG Shixiang.Interpretation of Xiu Shi Lu[M].Beijing:SDX Joint Publishing Company,2013:24.

    • [19] BONADUCE I,BLAENSDORF C,DIETEMANN P,et al.The binding media of the polychromy of Qin Shihuang’s Terracotta Army[J].Journal of Cultural Heritage,2008,9(1):103-108.

    • [20] 安晶晶,闫宏涛.古代彩绘颜料胶结材料MALDI-TOF-MS分析表征(Ⅰ)[J].科学通报,2013,58(3):211-217.AN Jingjing,YAN Hongtao.The binding media of ancient polychromy by matrix-assisted laser desorption/ionization time-of-fight mass spectrometry(Ⅰ)[J].Chinese Science Bulletin,2013,58(3):211-217.

    • [21] WEI Shuya,MA Qinglin,SCHREINER M.Scientific investigation of the paint and adhesive materials used in the Western Han dynasty polychromy terracotta army,Qingzhou,China[J].Journal of Archaeological Science,2012,39(5):1628-1633.

    • [22] WEI Shuya,SCHREINER M,GUO Hong,et al.Scientific investigation of the materials in a Chinese Ming Dynasty wall painting[J].International Journal of Conservation Science,2010,1(2):99-112.

    • [23] WEI Shuya,FANG Xiaoyang,YANG Jun,et al.Identification of the materials used in an Eastern Jin Chinese ink stick[J].Journal of Cultural Heritage,2012,13(4):448-452.

    • [24] 周文晖,王丽琴,樊晓蕾,等.博格达汗宫古建柱子油饰制作工艺及材料研究[J].内蒙古大学学报(自然科学版),2010,41(5):522-526.ZHOU Wenhui,WANG Liqin,FAN Xiaolei,et al.Study on the making techniques and materials of oil-samples from a column in Bogda Khan Palace Museum[J].Journal of Inner Mongolia University(Natural Science Edition),2010,41(5):522-526.

    • [25] BONADUCE I,ANDREOTTI A.Py-GC/MS of organic paint binders[M]//COLOMBINI M P,MODUGNO F.Organic Mass Spectrometry in Art and Archaeology.Chichester:John Wiley & Sons,Ltd.,2009:303-326.

    • [26] CHIAVARI G,BOCCHINI P,GALLETTI G C.Rapid identification of binding media in paintings using simultaneous pyrolysis methylation gas chromatography[J].Science and Technology for Cultural Heritage,1992,1(2):153-158.

    • [27] BOCCHINI P,TRALDI P.Organic mass spectrometry in our cultural heritage[J].Journal of Mass Spectrometry,1998,33:1053-1062.

    • [28] 王娜,谷岸,闵俊嵘,等.文物中常用蛋白质类胶结材料的热裂解-气相色谱/质谱识别[J].分析化学,2020,48(1):90-96.WANG Na,GU An,MIN Junrong,et al.Identification of protein binding media used in Chinese cultural relics by pyrolysis-gas chromatography/mass spectrometry[J].Chinese Journal of Analytical Chemistry,2020,48(1):90-96.

    • [29] SCHILLING M R,HEGINBOTHAM A,VAN KEULEN H,et al.Beyond the basics:a systematic approach for comprehensive analysis of organic materials in Asian lacquers[J].Studies in Conservation,2016,61(Suppl 3):3-27.

    • [30] 和玲,容波,任萌,等.盖蒂保护研究所的亚洲漆快速识别方法[J].文物保护与考古科学,2020,32(3):125-128.HE Ling,RONG Bo,REN Meng,et al.Fast identification method for Asian lacquer developed by Getty Conservation Institute[J].Sciences of Conservation and Archaeology,2020,32(3):125-128.

    • [31] 晋江市佛教协会.闽南名刹,龙山祖庭——记福建省晋江市安海龙山寺[J].中国宗教,2019(10):77-79.Jinjiang Buddhist Association.Longshan Temple:a famous temple in Anhai,Jinjiang,southern Fujian[J].China Religion,2019(10):77-79.

    • [32] KURATA S,ICHIKAWA K.Identification of natural leather microstrips by pyrolysis gas chromatography/mass spectrometry[J].Analytical Chemistry,2008,57(7):563-569.

    • [33] DUTTA S,KUMAR S,SINGH H,et al.Chemical evidence of preserved collagen in 54-million-year-old fish vertebrae[J].Palaeontology,2020,63(2):195-202.

    • [34] CHIAVARI G,PRATI S.Analytical pyrolysis as diagnostic tool in the investigation of works of art[J].Chromatographia,2003,58(9-10):543-554.

    • [35] COLOMBINI M P,GARUTIER G.GC/MS in the characterisation of protein paint binders[M]//COLOMBINI M P,MODUGNO F.Organic Mass Spectrometry in Art and Archaeology.Chichester:John Wiley & Sons,Ltd.,2009:237-259.

  • 参考文献

    • [1] FU Yingchun,CHEN Zifan,ZHOU Songluan,et al.Comparative study of the materials and lacquering techniques of the lacquer objects from Warring States Period China[J].Journal of Archaeological Science,2020,144:105060.

    • [2] HAO Xinying,WU Hao,ZHAO Yang,et al.Analysis on the composition/structure and lacquering techniques of the coffin of Emperor Qianlong excavated from the Eastern Imperial Tombs[J].Scientific Reports,2017,7:8446.

    • [3] WANG Na,ZHANG Tong,MIN Junrong,et al.Analytical investigation into materials and technique:carved lacquer decorated panel from Fuwangge in the Forbidden City of Qianlong Period,Qing Dynasty[J].Journal of Archaeological Science:Reports,2018,17:529-537.

    • [4] HAN B,VIAL J,SAKAMOTO S,et al.Identification of traditional East Asian handmade papers through the multivariate data analysis of pyrolysis-GC/MS data[J].Analyst,2019,144(4):1230-1244.

    • [5] HAN Bin,NIANG Jijia,RAO Huiyun,et al.Paper fragments from the Tibetan Samye Monastery:clues for an unusual sizing recipe implying wheat starch and milk in early Tibetan papermaking[J].Journal of Archaeological Science:Reports,2021,36:102793.

    • [6] YAO Na,WEI Shuya.Characterization and identification of traditional Chinese handmade paper via pyrolysis-gas chromatography-mass spectrometry[J].Bioresources,2021,16(2):3942-3951.

    • [7] 蒋建荣,魏书亚,陈百发.清代皇家建筑彩画所用胶结材料的分析研究[J].文物,2020(5):89-96.JIANG Jianrong,WEI Shuya,CHEN Baifa.Study on binding materials used in royal architectural color paintings in the Qing Dynasty[J].Cultural Relics,2020(5):89-96.

    • [8] 和玲,聂麦茜,CHIAVARI G.热裂解气相色质谱应用于古代壁画中油类黏合剂的分析[J].西安交通大学学报,2006,40(10):1134-1138.HE Ling,NIE Maiqian,CHIAVARI G.Pyrolysis gas chromatography-mass spectrometry applied to identification of oils in ancient paintings[J].Journal of Xi’an Jiaotong University,2006,40(10):1134-1138.

    • [9] 和玲,梁国正.热裂解气相色-质谱在文物保护和艺术品研究中的应用[J].文物保护与考古科学,2003,15(1):55-60.HE Ling,LIANG Guozheng.Application of pyrolysis gas chromatography-mass spectrometry in the conservation and investigation of art objects[J].Sciences of Conservation and Archaeology,2003,15(1):55-60.

    • [10] HAN Huarui,WEI Shuya,YANG Jun,et al.Characterization of the residues in Han Dynasty bronze lamps by pyrolysis-gas chromatography-mass spectrometry[J].Heritage Science,2019,7(1):37.

    • [11] 韩化蕊,魏书亚,静永杰,等.THM-Py-GC/MS分析内蒙古伊和淖尔出土照明燃料[J].光谱学与光谱分析,2019,39(12):3868-3872.HAN Huarui,WEI Shuya,JING Yongjie,et al.Analysis and research of residues from iron lamp unearthed in Yihenaoer,Inner Mongolia by THM-Py-GC/MS[J].Spectroscopy and Spectral Analysis,2019,39(12):3868-3872.

    • [12] 蒋建荣,潘付生,薛方,等.洛阳汉墓出土仙药的科技研究[J].中国科技史杂志,2019,40(2):127-136,124.JIANG Jianrong,PAN Fusheng,XUE Fang,et al.Scientific study of the immortal medicine excavated from a Han Dynasty Tomb in Luoyang[J].The Chinese Journal for the History of Science and Technology,2019,40(2):127-136,124.

    • [13] ORSINI S,PARLANTI F,BONADUCE I.Analytical pyrolysis of proteins in samples from artistic and archaeological objects[J].Journal of Analytical and Applied Pyrolysis,2017,124:643-657.

    • [14] 长北.髹饰录析解[M].南京:江苏凤凰美术出版社,2017:5.CHANG Bei.Interpretation of Xiu Shi Lu[M].Nanjing:Jiangsu Phoenix Fine Arts Publishing House,2017:5.

    • [15] 张坤,张秉坚,方世强.中国传统血料灰浆的应用历史和科学性[J].文物保护与考古科学,2013,25(2):94-102.ZHANG Kun,ZHANG Bingjian,FANG Shiqiang.The application history and scientific nature of blood-based materials in traditional Chinese mortar[J].Sciences of Conservation and Archaeology,2013,25(2):94-102.

    • [16] 刘敦桢.石轴柱桥述要(西安灞浐丰三桥)[M]//刘敦桢.刘敦桢文集(二).北京:中国建筑工业出版社,1984:1-34.LIU Dunzhen.Summary of shi zhou zhu qiao(Ba,Chan and Feng Bridges in Xi’an)[M]//LIU Dunzhen.Collected works of Liu Dunzhen(Ⅱ).Beijing:China Architecture & Building Press,1984:1-34.

    • [17] 宋玉兰.古代壁画胶结材料研究综述[J].文物鉴定与鉴赏,2019(14):86-87.SONG Yulan.A summary of the research on binding materials of ancient paintings[J].Identification and Appreciation to Cultural Relics,2019(14):86-87.

    • [18] 王世襄.髹饰录解说[M].北京:生活·读书·新知三联书店,2013:24.WANG Shixiang.Interpretation of Xiu Shi Lu[M].Beijing:SDX Joint Publishing Company,2013:24.

    • [19] BONADUCE I,BLAENSDORF C,DIETEMANN P,et al.The binding media of the polychromy of Qin Shihuang’s Terracotta Army[J].Journal of Cultural Heritage,2008,9(1):103-108.

    • [20] 安晶晶,闫宏涛.古代彩绘颜料胶结材料MALDI-TOF-MS分析表征(Ⅰ)[J].科学通报,2013,58(3):211-217.AN Jingjing,YAN Hongtao.The binding media of ancient polychromy by matrix-assisted laser desorption/ionization time-of-fight mass spectrometry(Ⅰ)[J].Chinese Science Bulletin,2013,58(3):211-217.

    • [21] WEI Shuya,MA Qinglin,SCHREINER M.Scientific investigation of the paint and adhesive materials used in the Western Han dynasty polychromy terracotta army,Qingzhou,China[J].Journal of Archaeological Science,2012,39(5):1628-1633.

    • [22] WEI Shuya,SCHREINER M,GUO Hong,et al.Scientific investigation of the materials in a Chinese Ming Dynasty wall painting[J].International Journal of Conservation Science,2010,1(2):99-112.

    • [23] WEI Shuya,FANG Xiaoyang,YANG Jun,et al.Identification of the materials used in an Eastern Jin Chinese ink stick[J].Journal of Cultural Heritage,2012,13(4):448-452.

    • [24] 周文晖,王丽琴,樊晓蕾,等.博格达汗宫古建柱子油饰制作工艺及材料研究[J].内蒙古大学学报(自然科学版),2010,41(5):522-526.ZHOU Wenhui,WANG Liqin,FAN Xiaolei,et al.Study on the making techniques and materials of oil-samples from a column in Bogda Khan Palace Museum[J].Journal of Inner Mongolia University(Natural Science Edition),2010,41(5):522-526.

    • [25] BONADUCE I,ANDREOTTI A.Py-GC/MS of organic paint binders[M]//COLOMBINI M P,MODUGNO F.Organic Mass Spectrometry in Art and Archaeology.Chichester:John Wiley & Sons,Ltd.,2009:303-326.

    • [26] CHIAVARI G,BOCCHINI P,GALLETTI G C.Rapid identification of binding media in paintings using simultaneous pyrolysis methylation gas chromatography[J].Science and Technology for Cultural Heritage,1992,1(2):153-158.

    • [27] BOCCHINI P,TRALDI P.Organic mass spectrometry in our cultural heritage[J].Journal of Mass Spectrometry,1998,33:1053-1062.

    • [28] 王娜,谷岸,闵俊嵘,等.文物中常用蛋白质类胶结材料的热裂解-气相色谱/质谱识别[J].分析化学,2020,48(1):90-96.WANG Na,GU An,MIN Junrong,et al.Identification of protein binding media used in Chinese cultural relics by pyrolysis-gas chromatography/mass spectrometry[J].Chinese Journal of Analytical Chemistry,2020,48(1):90-96.

    • [29] SCHILLING M R,HEGINBOTHAM A,VAN KEULEN H,et al.Beyond the basics:a systematic approach for comprehensive analysis of organic materials in Asian lacquers[J].Studies in Conservation,2016,61(Suppl 3):3-27.

    • [30] 和玲,容波,任萌,等.盖蒂保护研究所的亚洲漆快速识别方法[J].文物保护与考古科学,2020,32(3):125-128.HE Ling,RONG Bo,REN Meng,et al.Fast identification method for Asian lacquer developed by Getty Conservation Institute[J].Sciences of Conservation and Archaeology,2020,32(3):125-128.

    • [31] 晋江市佛教协会.闽南名刹,龙山祖庭——记福建省晋江市安海龙山寺[J].中国宗教,2019(10):77-79.Jinjiang Buddhist Association.Longshan Temple:a famous temple in Anhai,Jinjiang,southern Fujian[J].China Religion,2019(10):77-79.

    • [32] KURATA S,ICHIKAWA K.Identification of natural leather microstrips by pyrolysis gas chromatography/mass spectrometry[J].Analytical Chemistry,2008,57(7):563-569.

    • [33] DUTTA S,KUMAR S,SINGH H,et al.Chemical evidence of preserved collagen in 54-million-year-old fish vertebrae[J].Palaeontology,2020,63(2):195-202.

    • [34] CHIAVARI G,PRATI S.Analytical pyrolysis as diagnostic tool in the investigation of works of art[J].Chromatographia,2003,58(9-10):543-554.

    • [35] COLOMBINI M P,GARUTIER G.GC/MS in the characterisation of protein paint binders[M]//COLOMBINI M P,MODUGNO F.Organic Mass Spectrometry in Art and Archaeology.Chichester:John Wiley & Sons,Ltd.,2009:237-259.

  • 您是第位访问者
    主办单位:上海博物馆 编辑出版:《文物保护与考古科学》编辑委员会
    地址:上海市徐汇区龙吴路1118号,上海博物馆文物保护科技中心,《文物保护与考古科学》编辑部
    电话:021-54362886 传真:021-54363740 E-mail:wwbhykgkx@163.com
    文物保护与考古科学 ® 2024 版权所有
    沪ICP备10003390号-3
    沪公网安备 31010102005301号
    关闭