en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

申佳妮(1995—),女,研究生,研究方向为砖石文物风化及防治方法,E-mail:sjnendeavour@qq.com

通讯作者:

张中俭(1981—),男,副教授,研究方向为工程地质研究,E-mail:zhangzhongjian@cugb.edu.cn

中图分类号:K876.3;TU458

文献标识码:A

文章编号:1005-1538(2020)05-0081-05

参考文献 1
申佳妮,张中俭.烧制温度对红砖物理力学性质的影响[J].文物保护与考古科学,2019,31(5):105-111.SHEN Jiani,ZHANG Zhongjian.Influence of firing temperature on phyical and mechanical properties of red bricks[J].Sciences of Conservation and Archaeology,2019,31(5):105-111.
参考文献 2
DUNHAM A C,MCKNIGHT A S,WARREN I.Mineral assemblages formed in Oxford clay fired under different time-temperature conditions with reference to brick manufacture[J].Proceedings of Yorkshire Geological Society,2001,53(3):221-230.
参考文献 3
CULTRONE G,SEBASTIN E,ELERT K,et al. Influence of mineralogy and firing temperature on the porosity of bricks[J].Journal of the European Ceramic Society,2004,24(3):547-564.
参考文献 4
CULTRONE G,SIDRABA I,SEBASTIN E.Mineralogical and physical characterization of the bricks used in the construction of the “Triangul Bastion”,Riga(Latvia)[J].Applied Clay Science,2005,28(1):297-308.
参考文献 5
SENEVIRATNE C,PRIYANTHA N.Correlation between firing temperature and defluoridation capacity of brick clay[J].International Journal of Global Environmental Issues,2009,9(3):239-248.
参考文献 6
CHATFIELD M.Tracing firing technology through clay properties in Cuzco,Peru[J].Journal of Archaeological Science,2010,37(4):727-736.
参考文献 7
MANIATIS Y,TITE M S.Technological examination of Neolithic-Bronze Age pottery from central and southeast Europe and from the Near East[J].Journal of Archaeological Science,1981,8(1):59-76.
参考文献 8
MAGGETTI M,ROSSMANITH M.Archaeothermometry of kaolinitic clays[J].Revue Darchéométrie,1981,3(1):185-194.
参考文献 9
MIRTI P.On the use of colour coordinates to evaluate firing temperatures of ancient pottery[J].Archaeometry,2010,40(1):45-57.
参考文献 10
MIRTI P,DAVIT P.New developments in the study of ancient pottery by colour measurement[J].Journal of Archaeological Science,2004,31(6):741-751.
参考文献 11
TITE M S.Determination of the firing temperature of ancient ceramics by measurement of thermal expansion[J].Nature,2010,11(1):131-143.
参考文献 12
TITE M S.Determination of the firing temperature of ancient ceramics by measurement of thermal expansion:a reassessment[J].Archaeometry,1969,11(1):131-143.
参考文献 13
HAYASHIDA F,HUSLER W,WAGNER U.Technology and organisation of Inca pottery production in the Leche Valley.Part Ⅰ:study of clays[J].Hyperfine Interactions,2003(150):141-151.
参考文献 14
HAYASHIDA F,HUSLER W,RIEDERER J,et al.Technology and organisation of Inca pottery production in the Leche Valley.Part Ⅱ:study of fired vessels[J].Hyperfine Interactions,2003,150(1-4):153-163.
参考文献 15
JORDAN M M,MONTERO M A,MESEGUER S,et al. Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies[J].Applied Clay Science,2008,42(1-2):266-271.
参考文献 16
MOROPOULOU A,BAKOLAS A,BISBIKOU K.Thermal analysis as a method of characterizing ancient ceramic technologies[J].Thermochimica Acta,1995,269-270(1):743-753.
参考文献 17
RASMUSSEN K L,DE LA FUENTE G,BOND A,et al. Pottery firing temperatures:a new method for determining the firing temperature of ceramics and burnt clay[J].Journal of Archaeological Science,2012,39(6):1705-1716.
参考文献 18
刘建禹,翟国勋,陈荣耀.生物质燃料直接燃烧过程特性的分析[J].东北农业大学学报,2001,32(3):290-294.LIU Jianyu,ZHAI Guoxun,CHEN Rongyao.Analysis of characteristics of direct combustion process of biomass fuel[J].Journal of Northeast Agricultural University,2001,32(3):290-294.
目录contents

    摘要

    古砖的烧制温度决定了其物理力学性质。本研究提出基于磁化率来确定古砖烧制温度的方法。通过对古砖重新加温,测量不同温度下古砖的磁化率,得到磁化率差值的平方-温度曲线图。图中第一个较大的偏差对应的横坐标即为古砖的烧制温度。利用上述方法测得实际烧制温度为700 ℃、800 ℃和900 ℃的黏土砖的烧制温度分别为690 ℃、810 ℃和870 ℃。二者误差较小,认为利用该方法确定砖的烧制温度可行。本研究利用该方法确定了平遥古城10块古砖的烧制温度,发现其烧制温度在650~690 ℃和850~870 ℃两个区间范围内。据此推测平遥古城古砖是以秸秆和木柴为燃料烧制而成。本研究实验结果可为古建筑修复和保护提供理论参考。

    Abstract

    The firing temperature of ancient bricks determines their physical and mechanical properties. This paper proposes a new method to determine the firing temperature of ancient bricks based on magnetic susceptibility. By reheating ancient bricks, the magnetic susceptibilities of the ancient bricks at different temperatures were measuredand a magnetic susceptibility change-rising temperature figure was thus obtained. The first large deviation in the figure is the firing temperature of the ancient bricks. Using this method, the estimated firing temperatures of clay bricks that were fired at actual temperatures of 700 ℃, 800 ℃ and 900 ℃ were obtained: 690 ℃, 810 ℃ and 870 ℃, respectively. The small difference between the estimated and the actual temperatures proved the feasibility of the proposed method in determining the firing temperatures of bricks. In this paper, the firing temperatures of 10 ancient bricks in Pingyao ancient city were determined using this method. It was found that the firing temperatures were in the range of 650 ℃~690 ℃ and 850 ℃~870 ℃. Based on this, it is speculated that ancient bricks of Pingyao ancient city were heated by burning straw and firewood. The experimental results of this study could provide a theoretical reference for restoration and conservation of ancient buildings.

  • 0 引言

  • 古建筑的砖体在多年自然营力作用下正遭受着严重的风化破坏,亟待修复与加固。现如今,古建筑古砖的保护越来越受到人们的关注。

  • 烧制温度决定了古砖的物理力学性质[1]。研究古建筑古砖的烧制温度有利于寻找古砖替代砖。国内外学者对测量古砖烧制温度的方法进行了大量的研究。

  • 许多专家学者根据不同烧制温度下古砖的化学性质和物理性质不同,对古砖的烧制温度进行分析。Cultrone等[2-3]发现不同烧制温度下古砖中化合物和矿物成分及含量明显不同。他们利用SEM观察古砖的矿物成分和对古砖进行超声波测量,推断拉脱维亚的三角堡垒中黄色古砖的烧制温度低于红色古砖[4]。Seneviratne等[5]发现古砖中氟化物含量会随着烧制温度变化而变化,根据氟化物的浓度变化可以推测古砖的烧制温度。Chatfield[6]和Maniatis[7]等发现烧制温度越高,黏土砖的玻璃化程度越高,黏土基质烧结和玻璃化程度可以粗略评估砖瓦的烧制温度。Maggetti[8]等发现不同烧制温度下黏土砖中伊利石中间层的厚度明显不同,他们利用XRD测量伊利石中间层的厚度从而对砖瓦块的烧制温度进行了估计。Mirti[9]和Davit[10]等发现黏土砖的颜色会随烧制温度的改变而改变,根据黏土砖表面颜色的不同可以对比古砖的烧制温度。但以上方法只能推测黏土砖的烧制温度高于(或低于)某一温度,或者将两块黏土砖温度进行比较,并不能测算出黏土砖的具体烧制温度。Roberts和Tite[11-12]等发现黏土砖的热膨胀系数会随着黏土砖的烧制温度而变化,形状规则的砖瓦块可以利用它的热膨胀系数来测量它的烧制温度。但这种方法只适用于500~1200℃之间烧制温度的黏土砖,烧制温度太高或太低都无法得出结果,且误差较大。Hayashida[13-14]等通过观察黏土砖的Mossbauer线的强度来估计黏土砖的烧制温度。但此种方法误差较大,只能估计烧制温度的区间,测量需要精密仪器,操作复杂。

  • 在焙烧黏土砖时,黏土块内的矿物经历特征性反应,例如脱羟基化,分解和转化。其中,烧制温度影响矿物的变化程度[15-16]。在烧制时,随着原始矿物的破坏和新生矿物的产生和生长,黏土砖的磁性也发生变化;黏土砖一旦冷却下来,矿物成分和磁性就不会再发生变化[17]。基于此,本研究提出利用磁化率来确定黏土砖的烧制温度。首先,利用该方法测试已知烧制温度的古砖,检验该方法的可靠性;然后,利用该方法,测量了平遥古城10块古砖的烧制温度。

  • 1 测试方法

  • 对黏土砖重新进行回温时,当黏土砖在低于原烧制温度时,其矿物成分几乎不会再发生变化,矿物磁性也基本不会发生变化。但是当重新回温的温度接近或大于原烧制温度时,原先未反应的矿物或新生成的矿物会发生改变,从而引起矿物磁性的改变。因此,可以通过黏土砖的磁性来确定黏土砖的烧制温度。

  • 假定黏土砖的烧制温度范围,将黏土砖放入高温炉中,将高温炉升温至假定最低温度,并保持24 h。关闭高温炉电源,黏土砖在高温炉中静置24 h,并完全冷却。

  • 从高温炉中取出黏土砖,使用SM-30型磁化率测量仪对其进行测量,每块黏土砖测量3次,求取3次所测磁化率的平均值,获得黏土砖在假定最低温度下的磁化率数据。之后每次增加温度间隔20℃,重复上述升温、降温和测量磁化率的步骤,直至温度达到假定最高温度,获取这组黏土砖在相应温度下的磁化率数据。

  • 将不同温度下黏土砖的磁化率作为纵坐标,升温温度作为横坐标,获得黏土砖磁化率-温度曲线图。将相邻的黏土砖磁化率数据的差值的平方作为纵坐标,温度作为横坐标,获得磁化率差值的平方—温度曲线图,该曲线图中第一次较大的偏差的横坐标即为黏土砖的烧制温度。

  • 2 已知烧制温度的黏土砖的烧制温度测量

  • 为了验证该方法的合理性,从平遥县取土,设置不同的烧制温度分别在高温炉中烧制黏土砖。利用本研究所述的方法测量上述黏土砖的烧制温度,并与其实际烧制温度进行对比。

  • 在高温炉中烧制黏土砖所设置的温度分别为700℃、800℃、900℃,每种烧制温度制作2块边长为4 cm的立方体样品。将上述6块黏土砖在50℃下烘箱内烘干24 h,冷却后将表面磨平。

  • 图1为烧制温度700℃、800℃和900℃的黏土砖的磁化率差值的平方-温度曲线图,该曲线图中第一次较大的偏差的横坐标即为黏土砖的烧制温度,如图1中箭头所示。由于试验测试时每次温度增量为20℃,所以,磁化率突变所对应温度应该为20℃内的某一温度,本研究取增量的中间值10℃。

  • 图1 以已知烧制温度的黏土砖为例测量黏土砖烧制温度曲线图

  • Fig.1 Graphs of measuring the firing temperatures of bricks with known firing temperatures

  • 表1给出了6块黏土砖烧制温度的测量结果。表1所示的编号(A-B)中A代表烧制温度,B代表该烧制温度下的样品编号。例如,700-1表示为烧制温度为700℃的第1个样品。

  • 由表1可知,根据磁化率变化,测量黏土砖烧制温度的方法,误差较小。实验结果表明根据磁化率变化,测量黏土砖烧制温度的方法可行。

  • 表1 基于磁化率测量已知烧制温度黏土砖的烧制温度

  • Table 1 Results of measuring the firing temperatures of bricks with known firing temperatures

  • 3 平遥古城古砖的烧制温度测量

  • 在平遥古城的鹦鹅巷、贺兰桥、仁义街以及城墙等处取得古砖10块。每块古砖切割出2个边长4 cm的立方体样品,作为平行样品对该块古砖的烧制温度进行测量。通过测试不同温度下的磁化率来分析这10块古砖的烧制温度。

  • 图2为平遥古城古砖的磁化率差值的平方-温度曲线图,该曲线图中第一次较大的偏差的横坐标即为古砖的烧制温度,如图2中箭头所示。

  • 图2 以平遥古城10个砖样为例测量古砖烧制温度曲线图

  • Fig.2 Graphs of measuring the firing temperatures of bricks from Pingyao ancient city

  • 需要说明的是,图2所示的编号(A-B)中A代表古砖编号;B代表每块古砖切割成的样品编号。例如,1-1和1-2分别为所取的第1块古砖切割成的第1个和第2个样品。

  • 由图2可知,平遥古城古砖烧制温度在650~690℃和850~870℃两个区间范围内。

  • 在炉灶中燃烧玉米秸秆的火焰温度实测500~700℃[18]。作者曾用希码AR872D红外测温仪测试在空旷环境中燃烧的木材的温度为830℃。

  • 据此,推测烧制温度为650~690℃的古砖是以秸秆为燃料烧制而成;烧制温度在850~870℃的古砖是以木柴为燃料烧制而成。

  • 4 结论

  • 本研究通过测试不同温度下平遥古城黏土砖的磁化率,得到了其烧制温度。具体而言:

  • 1)通过将已知烧制温度为700℃、800℃和900℃的黏土砖重新加温,测量黏土砖不同温度下的磁化率,得到其烧制温度分别为690℃、810℃和870℃。基于磁化率方法测量含有磁性矿物的黏土砖、陶瓷等的烧制温度是可行的。

  • 2)利用上述测试方法,测量了平遥古城的10个古砖20个样品的烧制温度,发现古砖的烧制温度在650~690℃和850~870℃两个区间范围内。推测这两种古砖分别以秸秆和木柴为燃料烧制而成。

  • 参考文献

    • [1] 申佳妮,张中俭.烧制温度对红砖物理力学性质的影响[J].文物保护与考古科学,2019,31(5):105-111.SHEN Jiani,ZHANG Zhongjian.Influence of firing temperature on phyical and mechanical properties of red bricks[J].Sciences of Conservation and Archaeology,2019,31(5):105-111.

    • [2] DUNHAM A C,MCKNIGHT A S,WARREN I.Mineral assemblages formed in Oxford clay fired under different time-temperature conditions with reference to brick manufacture[J].Proceedings of Yorkshire Geological Society,2001,53(3):221-230.

    • [3] CULTRONE G,SEBASTIN E,ELERT K,et al. Influence of mineralogy and firing temperature on the porosity of bricks[J].Journal of the European Ceramic Society,2004,24(3):547-564.

    • [4] CULTRONE G,SIDRABA I,SEBASTIN E.Mineralogical and physical characterization of the bricks used in the construction of the “Triangul Bastion”,Riga(Latvia)[J].Applied Clay Science,2005,28(1):297-308.

    • [5] SENEVIRATNE C,PRIYANTHA N.Correlation between firing temperature and defluoridation capacity of brick clay[J].International Journal of Global Environmental Issues,2009,9(3):239-248.

    • [6] CHATFIELD M.Tracing firing technology through clay properties in Cuzco,Peru[J].Journal of Archaeological Science,2010,37(4):727-736.

    • [7] MANIATIS Y,TITE M S.Technological examination of Neolithic-Bronze Age pottery from central and southeast Europe and from the Near East[J].Journal of Archaeological Science,1981,8(1):59-76.

    • [8] MAGGETTI M,ROSSMANITH M.Archaeothermometry of kaolinitic clays[J].Revue Darchéométrie,1981,3(1):185-194.

    • [9] MIRTI P.On the use of colour coordinates to evaluate firing temperatures of ancient pottery[J].Archaeometry,2010,40(1):45-57.

    • [10] MIRTI P,DAVIT P.New developments in the study of ancient pottery by colour measurement[J].Journal of Archaeological Science,2004,31(6):741-751.

    • [11] TITE M S.Determination of the firing temperature of ancient ceramics by measurement of thermal expansion[J].Nature,2010,11(1):131-143.

    • [12] TITE M S.Determination of the firing temperature of ancient ceramics by measurement of thermal expansion:a reassessment[J].Archaeometry,1969,11(1):131-143.

    • [13] HAYASHIDA F,HUSLER W,WAGNER U.Technology and organisation of Inca pottery production in the Leche Valley.Part Ⅰ:study of clays[J].Hyperfine Interactions,2003(150):141-151.

    • [14] HAYASHIDA F,HUSLER W,RIEDERER J,et al.Technology and organisation of Inca pottery production in the Leche Valley.Part Ⅱ:study of fired vessels[J].Hyperfine Interactions,2003,150(1-4):153-163.

    • [15] JORDAN M M,MONTERO M A,MESEGUER S,et al. Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies[J].Applied Clay Science,2008,42(1-2):266-271.

    • [16] MOROPOULOU A,BAKOLAS A,BISBIKOU K.Thermal analysis as a method of characterizing ancient ceramic technologies[J].Thermochimica Acta,1995,269-270(1):743-753.

    • [17] RASMUSSEN K L,DE LA FUENTE G,BOND A,et al. Pottery firing temperatures:a new method for determining the firing temperature of ceramics and burnt clay[J].Journal of Archaeological Science,2012,39(6):1705-1716.

    • [18] 刘建禹,翟国勋,陈荣耀.生物质燃料直接燃烧过程特性的分析[J].东北农业大学学报,2001,32(3):290-294.LIU Jianyu,ZHAI Guoxun,CHEN Rongyao.Analysis of characteristics of direct combustion process of biomass fuel[J].Journal of Northeast Agricultural University,2001,32(3):290-294.

  • 参考文献

    • [1] 申佳妮,张中俭.烧制温度对红砖物理力学性质的影响[J].文物保护与考古科学,2019,31(5):105-111.SHEN Jiani,ZHANG Zhongjian.Influence of firing temperature on phyical and mechanical properties of red bricks[J].Sciences of Conservation and Archaeology,2019,31(5):105-111.

    • [2] DUNHAM A C,MCKNIGHT A S,WARREN I.Mineral assemblages formed in Oxford clay fired under different time-temperature conditions with reference to brick manufacture[J].Proceedings of Yorkshire Geological Society,2001,53(3):221-230.

    • [3] CULTRONE G,SEBASTIN E,ELERT K,et al. Influence of mineralogy and firing temperature on the porosity of bricks[J].Journal of the European Ceramic Society,2004,24(3):547-564.

    • [4] CULTRONE G,SIDRABA I,SEBASTIN E.Mineralogical and physical characterization of the bricks used in the construction of the “Triangul Bastion”,Riga(Latvia)[J].Applied Clay Science,2005,28(1):297-308.

    • [5] SENEVIRATNE C,PRIYANTHA N.Correlation between firing temperature and defluoridation capacity of brick clay[J].International Journal of Global Environmental Issues,2009,9(3):239-248.

    • [6] CHATFIELD M.Tracing firing technology through clay properties in Cuzco,Peru[J].Journal of Archaeological Science,2010,37(4):727-736.

    • [7] MANIATIS Y,TITE M S.Technological examination of Neolithic-Bronze Age pottery from central and southeast Europe and from the Near East[J].Journal of Archaeological Science,1981,8(1):59-76.

    • [8] MAGGETTI M,ROSSMANITH M.Archaeothermometry of kaolinitic clays[J].Revue Darchéométrie,1981,3(1):185-194.

    • [9] MIRTI P.On the use of colour coordinates to evaluate firing temperatures of ancient pottery[J].Archaeometry,2010,40(1):45-57.

    • [10] MIRTI P,DAVIT P.New developments in the study of ancient pottery by colour measurement[J].Journal of Archaeological Science,2004,31(6):741-751.

    • [11] TITE M S.Determination of the firing temperature of ancient ceramics by measurement of thermal expansion[J].Nature,2010,11(1):131-143.

    • [12] TITE M S.Determination of the firing temperature of ancient ceramics by measurement of thermal expansion:a reassessment[J].Archaeometry,1969,11(1):131-143.

    • [13] HAYASHIDA F,HUSLER W,WAGNER U.Technology and organisation of Inca pottery production in the Leche Valley.Part Ⅰ:study of clays[J].Hyperfine Interactions,2003(150):141-151.

    • [14] HAYASHIDA F,HUSLER W,RIEDERER J,et al.Technology and organisation of Inca pottery production in the Leche Valley.Part Ⅱ:study of fired vessels[J].Hyperfine Interactions,2003,150(1-4):153-163.

    • [15] JORDAN M M,MONTERO M A,MESEGUER S,et al. Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies[J].Applied Clay Science,2008,42(1-2):266-271.

    • [16] MOROPOULOU A,BAKOLAS A,BISBIKOU K.Thermal analysis as a method of characterizing ancient ceramic technologies[J].Thermochimica Acta,1995,269-270(1):743-753.

    • [17] RASMUSSEN K L,DE LA FUENTE G,BOND A,et al. Pottery firing temperatures:a new method for determining the firing temperature of ceramics and burnt clay[J].Journal of Archaeological Science,2012,39(6):1705-1716.

    • [18] 刘建禹,翟国勋,陈荣耀.生物质燃料直接燃烧过程特性的分析[J].东北农业大学学报,2001,32(3):290-294.LIU Jianyu,ZHAI Guoxun,CHEN Rongyao.Analysis of characteristics of direct combustion process of biomass fuel[J].Journal of Northeast Agricultural University,2001,32(3):290-294.

  • 您是第位访问者
    主办单位:上海博物馆 编辑出版:《文物保护与考古科学》编辑委员会
    地址:上海市徐汇区龙吴路1118号,上海博物馆文物保护科技中心,《文物保护与考古科学》编辑部
    电话:021-54362886 传真:021-54363740 E-mail:wwbhykgkx@163.com
    文物保护与考古科学 ® 2024 版权所有
    沪ICP备10003390号-3
    沪公网安备 31010102005301号
    关闭