en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

甄刚(1977—),男,陕西省文物保护研究院,副研究员,研究方向为文物保护修复研究,E-mail:zhen-gang@sohu.com

中图分类号:K879

文献标识码:A

文章编号:1005-1538(2022)05-0032-11

DOI:10.16334/j.cnki.cn31-1652/k.20211102329

参考文献 1
李茜.大同华严寺辽代彩塑纹饰类型及特点研究[J].文物鉴定与鉴赏,2020(15):24-25.LI Qian.Study on the types and characteristics of Liao Dynasty polychrome decoration of Huayan Temple in Datong[J].Identification and Appreciation to Cultural Relics,2020(15):24-25.
参考文献 2
邰力钟.大同华严寺大雄宝殿壁画内容及艺术价值研究[J].文物鉴定与鉴赏,2020(9):13-15.TAI Lizhong.Study on the content and artistic value of the mural in the Great Buddha’s Hall of Huayan Temple in Datong[J].Identification and Appreciation to Cultural Relics,2020(9):13-15.
参考文献 3
崔茜.大同华严寺薄伽教藏殿的壁藏建筑艺术[J].文物鉴定与鉴赏,2018(12):10-11.CUI Qian.The wall art of the Bhagavad Sutra Hall of Huayan Temple in Datong[J].Identification and Appreciation to Cultural Relics,2018(12):10-11.
参考文献 4
白雪松.大同华严寺小环境变化对文物本体病害影响初探[J].山西大同大学学报(自然科学版),2019,35(1):92-96.BAI Xuesong.A preliminary study on the effects of small environmental changes on the damage of cultural relics[J].Journal of Shanxi Datong University(Natural Science Edition),2019,35(1):92-96.
参考文献 5
SENE C,MCCANN M C,WILSON R H,et al.Fourier-transform Raman and Fourier-transform infrared spectroscopy(an investigation of five higher plant cell walls and their components)[J].Plant Physiology,1994,106(4):1623-1631.
参考文献 6
KLISINSKA-KOPACZ A.Non-destructive characterization of 17th century painted silk banner by the combined use of Raman and XRF portable systems[J].Journal of Raman Spectroscopy:An International Journal for Original Work in All Aspects of Raman Spectroscopy,Including Higher Order Processes,and Also Brillouin-and Rayleigh Scattering,2015,46(3):317-321.
参考文献 7
DENECKERE A,LEEFLANG M,BLOEM M,et al.The use of mobile Raman spectroscopy to compare three full-page miniatures from the breviary of Arnold of Egmond[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy,2011,83(1):194-199.
参考文献 8
COSANO D,ESQUIVEL D,COSTA C M,et al.Identification of pigments in the Annunciation sculptural group(Cordoba,Spain)by micro-Raman spectroscopy[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy,2019,214:139-145.
参考文献 9
GARD F S,SANTOS D M,DAIZO M B,et al.Pigments analysis of an Egyptian cartonnage by means of XPS and Raman spectroscopy[J].Applied Physics A,2020,126(3):628.
参考文献 10
张志军.秦始皇陵兵马俑文物保护研究[M].西安:陕西人民教育出版社,1998.ZHANG Zhijun.Research on the protection of the Terracotta Warriors and Horses in the Mausoleum of Emperor Qin Shihuang[M].Xi’an:Shaanxi People’s Education Press,1998.
参考文献 11
李最雄.丝绸之路石窟壁画彩塑保护[M].北京:科学出版社,2005.LI Zuixiong.Protection of polychrome clay sculptures on the Silk Road[M].Beijing:Science Press,2005.
参考文献 12
LEI Z,WU W,SHANG G,et al.Study on colored pattern pigments of a royal Taoist temple beside the Forbidden City(Beijing,China)[J].Vibrational Spectroscopy,2017,92:234-244.
参考文献 13
DANIILIA S,SOTIROPOULOU S,BIKIARIS D,et al.Panselinos’ Byzantine wall paintings in the Protaton Church,Mount Athos,Greece:a technical examination[J].Journal of Cultural Heritage,2000,1(2):91-110.
参考文献 14
COCCATO A,BERSANI D,COUDRAY A,et al.Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research[J].Journal of Raman Spectroscopy:An International Journal for Original Work in All Aspects of Raman Spectroscopy,Including Higher Order Processes,and Also Brillouin-and Rayleigh Scattering,2016,47(12):1429-1443.
参考文献 15
MARCAIDA I,MAGUREGUI M,MORILLAS H,et al.In situ non-invasive characterization of the composition of Pompeian pigments preserved in their original bowls[J].Microchemical Journal,2018,139:458-466..
参考文献 16
LEI Yong.Copper trihydroxychlorides as pigments in China[J].Studies in Conservation,2012,57(2):106-111.
参考文献 17
COSANOA D,ESQUIVELA D,MATEOS L D,et al.Spectroscopic analysis of corrosion products in a bronze cauldron from the Late Iberian Iron Age[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy,2018,205:489-496.
参考文献 18
CHANG T,HERTING G,JIN Y,et al.The golden alloy Cu5Zn5Al1Sn:patina evolution in chloride-containing atmospheres[J].Corrosion Science,2018,133(4):190-203.
参考文献 19
FROST R L,MARTENS W N,RINTOUL L,et al.Raman spectroscopic study of azurite and malachite at 298 and 77 K[J].Journal of Raman Spectroscopy,2010,33(4):252-259.
参考文献 20
GELZO M,GRIMALDI M,VERGARA A,et al.Comparison of binder compositions in Pompeian wall painting styles from Insula Occidentalis[J].Chemistry Central Journal,2014,8:65:1-65:10.
参考文献 21
HAO X,WU H,ZHAO Y,et al.Analysis on the composition/structure and lacquering techniques of the coffin of Emperor Qianlong excavated from the Eastern Imperial Tombs[J].Scientific Reports,2017,7:8446.
参考文献 22
HAO X,WU H,ZHAO Y,et al.Scientific investigation of the lacquered wooden coffin of Xiang Fei excavated from Eastern Royal Tombs of the Qing Dynasty[J].New Journal of Chemistry,2017,41(18):9806-9814.
参考文献 23
ILMI M M,NURDINI N,MARYANTI E,et al.Multi-analytical characterizations of prehistoric rock art pigments from Liang Karim Cave,Sangkulirang-Mangkalihat site,East Kalimantan,Indonesia[J].Microchemical Journal,2020,155:104738.
参考文献 24
HAO X,SCHILLING M R,WANG X,et al.Use of THM-PY-GC/MS technique to characterize complex,multilayered Chinese lacquer[J].Journal of Analytical and Applied Pyrolysis,2019,140:339-348.
参考文献 25
SONG Y,GAO F,NEVIN A,et al.A technical study of the materials and manufacturing process used in the Gallery wall paintings from the Jokhang temple,Tibet[J].Heritage Science,2018,6:18:1-18:13.
参考文献 26
WANG N,ZHANG T,MIN J,et al.Analytical investigation into materials and technique:carved lacquer decorated panel from Fuwangge in the Forbidden City of Qianlong Period,Qing Dynasty[J].Journal of Archaeological Science:Reports,2018,17:529-537.
参考文献 27
LU R,KAMIYA Y,MIYAKOSHI T.Applied analysis of lacquer films based on pyrolysis-gas chromatography/mass spectrometry[J].Talanta,2006,70(2):370-376.
参考文献 28
WANG X,HAO X,ZHAO Y,et al.Systematic study of the material,structure and lacquering techniques of lacquered wooden coffins from the Eastern Regius Tombs of the Qing Dynasty,China[J].Microchemical Journal,2021,168(2):106369.
目录contents

    摘要

    为揭示大同辽代华严寺彩绘泥塑颜料及胶结剂的化学成分及调制应用组合,对华严寺薄伽教藏殿内的典型颜料层样品进行了综合剖析。利用超景深显微镜、扫描电镜-X射线能谱、显微拉曼光谱等对彩绘样品中的颜料部分展开分析。结果表明,红色颜料主要是铅丹(Pb3O4)和朱砂(HgS),绿色颜料主要是孔雀石[Cu2CO3(OH)2]和氯铜矿[Cu2(OH)3Cl],而且这两种颜色存在着同色系的两种颜料混和使用的情况。蓝色颜料则为蓝铜矿[Cu3(CO3)2(OH)2],黄色颜料为雌黄(As2S3),金色区域则主要是由金(Au)构成;采用红外光谱和甲基衍生化-热裂解-气相色谱串联质谱技术对彩绘样品中的胶结剂成分进行检测。结果表明,金色区域的胶结剂主要是熟桐油和胶蛋白,说明其中存在着“金胶油”的传统贴金工艺;而其他红、绿、蓝、黄等彩色区域则只有胶蛋白为胶结剂。研究结果为后续的彩塑保护提供一定的科学支持。

    Abstract

    In order to reveal the compositions of pigments and adhesives used for polychrome clay sculptures of the Liao Dynasty in Huayan Temple in Datong, we carried out comprehensive analysis of typical polychrome samples. Digital microscopy, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) and micro-Raman spectrometry were used for pigment analysis. The results show that the red pigments are mainly lead red (Pb3O4) and cinnabar (HgS), the green ones mainly malachite [Cu2CO3(OH)2] and atacamite [Cu2(OH)3Cl] (these two samples were mixed with two different pigments in similar colors), the blue one is azurite [Cu3(CO3)2(OH)2], the yellow one orpiment (As2S3) and the gold area mainly composed of gold(Au). The composition of adhesives in polychrome samples was detected by Fourier transform infrared (FTIR) spectrometry and thermally assisted hydrolysis and methylation-pyrolysis-gas chromatography/mass spectrometry (THM-Py-GC/MS). The results show that the main adhesives for the gold area are heat-bodied tung oil and glue protein, indicating the existence of the traditional painting technique of “gilding”. For the other color (red, green, blue and yellow) areas, only glue protein is used as adhesives.

  • 0 引言

  • 华严寺,位于山西省大同市古城内西南隅,系辽兴宗、道宗时(公元1031—1101年)所建,是辽代的佛教建筑,兼具辽国皇室宗庙性质,地位显赫,其命名来自于佛教著名经典著作《华严经》中的“慈悲之华,必结庄严之果”的大乘教义之意。华严寺坐西向东,山门、普光明殿、大雄宝殿、薄伽教藏殿、华严寺宝塔等30余座单体建筑分别排列在南北两条主轴线上,布局严谨。其中,薄伽教藏殿始建于辽代重熙七年(公元1038年),在中央佛坛上供奉有29尊辽代彩塑,堪称辽塑精品,具有极高的历史价值和艺术价值。

  • 目前,国内外学者对华严寺的整体研究更多的是侧重于华严寺彩绘泥塑的艺术价值,文化价值,历史价值等。例如,李茜等主要研究了华严寺辽代彩塑纹饰类型及特点[1];邰力钟等则专注于华严寺大雄宝殿的壁画内容及其艺术价值[2];崔茜等分析了华严寺薄伽教藏殿的壁藏建筑艺术等[3]。而对华严寺彩绘泥塑现存环境、文物病害等分析研究则相对较少。其中,白雪松等在对华严寺的环境检测中发现了长期的温湿度大幅度变化很容易引起木构件的频繁湿胀干缩,变形腐烂和墙体倾斜、开裂及空鼓等,也提出了温湿度的过大浮动频率会加重泥塑的病害情况[4]。正如文献中提到的,经过千余年的历史沧桑变化,华严寺的大多数彩塑都出现了一系列劣化病害,其中包括彩绘颜料层的脱落、起甲,金箔层的破损,泥塑胎体残缺、断裂、酥粉等。这些现存病害是影响华严寺彩塑整体安全的重要因素,也使得华严寺彩塑的分析及保护研究迫在眉睫。

  • 本研究选取具有代表性的华严寺薄伽教藏殿彩塑颜料层样品为研究对象,使用超景深显微镜、扫描电镜、X射线能谱、显微拉曼光谱等多种分析方法相结合的形式剖析彩绘颜料层的无机组成成分,确定物质类别,并运用红外光谱和衍生化-热裂解-气相色谱串联质谱技术,进一步分析彩塑中可能存在的胶结剂等有机成分,探究辽代彩塑颜料层的物质组成及历史传承,为后续的彩塑保护提供一定的科学支持。

  • 1 样品及方法

  • 1.1 样品

  • 华严寺的彩绘泥塑颜料层样品均采自于山西省大同市华严寺薄伽教藏殿,具体样品情况列于表1中。

  • 1.2 实验方法

  • 1.2.1 超景深显微镜

  • 为了更清晰地观察并分析彩绘样品的表面情况,采用超景深显微镜(VHX-7000,KEYENCE,Japan)对样品进行观察。样品放大倍数为20~200倍。

  • 表1 彩绘泥塑样品信息

  • Table1 Information of polychrome clay sculpture samples

  • 1.2.2 扫描电镜-X射线能谱

  • 彩绘样品的微观形貌观察使用场发射扫描电镜(Sigma, Zeiss, Germany)并配备X射线能谱仪(Ultim Max 40,Oxford,UK)分析彩绘颜料的元素组成情况。其中,加速电压为10kV,工作距离分别为5.0mm和8.5mm。

  • 1.2.3 显微拉曼光谱

  • 使用显微拉曼光谱仪(LabRAMHR,JY-Evolution,HORIBA)对彩绘样品进行微区物质成分分析,研究其颜料组成情况。本实验采用532nm激光源为检测光源。

  • 1.2.4 红外光谱

  • 使用红外光谱仪(Nicolet 5700,Thermo)初步分析彩绘颜料中可能含有的胶结剂成分,光谱范围为4 000~400cm-1,扫描速率为4cm-1/s,扫描次数为64次。

  • 1.2.5 甲基衍生化-热裂解-气相色谱串联质谱

  • 彩绘颜料中可能含有的胶结剂成分使用甲基衍生化-热裂解-气相色谱串联质谱技术分析检测(EGA/Py-3030D,FRONTIER LAB和GCMS-QP2020,SHIMADZU)。本研究中所使用的衍生化试剂为四甲基氢氧化铵(TMAH,阿拉丁),红色区域和金色区域的待测样品取约为1mg±0.3mg,再将约10 μL的衍生化试剂加入到1mg的待测样品当中,再通过热裂解装置使其气化,后通过气相色谱串联质谱仪得到相关数据结果。专业数据分析参考相关物质数据库(NIST,岛津,美国盖蒂文物保护中心及实验室相关老化样品数据库)。

  • 2 结果与讨论

  • 华严寺辽代彩绘泥塑以金,红,蓝,绿,黄色为主要色彩,从中选取典型颜料层样品进行剖析。首先,通过扫描电镜-能谱和显微拉曼光谱等分析方法对彩绘颜料层的无机颜料组成进行详细研究,再利用红外光谱和甲基衍生化-热裂解-气相色谱串联质谱技术对彩绘样品中的有机成分进行分析鉴定。

  • 2.1 红色

  • 以3号弥勒佛中的红色区域(图1)HYBQ-2为例进行分析,发现其红色区域是由铅丹(Pb3O4)和朱砂(HgS)两种矿物颜料混合而成的。拉曼光谱中120,141,163,227,475,544cm-1为铅丹的典型拉曼吸收峰[5],其中544cm-1表明了铅丹中Pb-O键的存在[6];而250,287,349cm-1则证明了朱砂的存在[7],250cm-1是典型的Hg-S键伸缩振动峰[6,8-9]。同时,根据对截面的观察和成分分析发现,铅丹和朱砂的使用并没有明显的分层现象,说明两者极有可能是混合后所共同使用的。

  • 自古以来,铅丹和朱砂都是中外用途最为广泛的红色无机矿物颜料,在秦始皇陵兵马俑坑、敦煌莫高窟,新疆克孜尔石窟,陕西彬县大佛寺石窟,故宫等都发现了它们的存在[10-12];而古希腊的壁画中也有它们的痕迹[13]。两者相比之下,朱砂的理化性质较为稳定,且色彩鲜艳。李最雄先生研究发现,铅丹在单独使用时,在潮湿的条件下,会由红色(Pb3O4)变成黑色(PbO2);而铅丹与朱砂混合使用时,铅丹却变得较为稳定而不容易变色了[11]124。华严寺辽代彩塑的红色是由铅丹与朱砂混合而成的,是有历史传承并符合时代特征的。但也注意到,华严寺中的红色并不都是由铅丹与朱砂混合而成的,还存在着单独使用铅丹作为红色颜料的实例,如图2中(b1)中迦叶尊者衣摆上的红色样品HYBQ-9,其表面红色颜料的主要成分为铅丹,同时也没有发现朱砂的存在,而目前所有样品中没有发现单独使用朱砂的红色样品。

  • 图1 3号弥勒佛

  • Fig.1 No.3Maitreya Buddha

  • 图2 26号迦叶尊者

  • Fig.2 No.26Kassapa Thera

  • 2.2 绿色

  • 与红色区域情况相类似的是,绿色区域(图3)HYBQ-11同样是存在着两种矿物颜料,分别是孔雀石[Cu2CO3(OH)2]和氯铜矿[Cu2(OH)3Cl]。图3e中154,180,215和354cm-1处的拉曼特征峰揭示了Cu-O键的存在[14],1 098cm-1处的拉曼峰则归属于碳酸根(CO3)2-,1 053cm-1处的特征峰则是C-O键伸缩振动峰的标志[6],这些都是孔雀石的拉曼特征峰,揭示着孔雀石的存在[15]。而图3d中,514,819,916,974,3 350和3 435cm-1正是氯铜矿的典型拉曼特征峰[16],3 350和3 435cm-1表明了O-H键的存在[17],800~1 000cm-1区间内的拉曼峰是由于O-H键和Cu-OH的弯曲振动引起的,而514cm-1处的特征峰则是O-Cu-O和Cl-Cu-Cl键的振动标志[16,18]。同时,能谱中读出的大量的氯元素也是氯铜矿存在的佐证。并且,从样品截面图(图3f)中观察发现,与红色样品直接混合使用不同的是,其中截面层次鲜明,存在着明显的分层结构,深绿层(3层)和亮绿层(3层)交错排列有序,质地上亮绿部分颗粒感更加明显;通过拉曼光谱对其不同层次进行分析发现,深绿色层的主要物质为氯铜矿,而亮绿色层的主要物质为孔雀石,两者存在着一定的差异。说明绿色区域的两种颜料并非像红色颜料那样直接混合后使用,同时,也正是两种颜色层有序的交错排列,且每一孔雀石层都略厚于氯铜矿层,截面直观上无明显的修补痕迹,故推测该区域的颜料使用很有可能是制作当时为了达到预期的艺术视觉效果而混合使用颜料(交替着色叠加),描绘而成彩绘颜料层。

  • 在这两种绿色颜料中,孔雀石的应用要更早一些,在秦兵马俑的彩绘颜料中绿色就是用的石绿(即孔雀石),但还未用氯铜矿[10],而在敦煌莫高窟壁画中所用的绿色颜料既有孔雀石也有氯铜矿,但在不同时期却有主次的不同:早期(十六国、北魏、西魏、北周)大量用氯铜矿、少量用石绿(孔雀石),中期(隋唐)主要石绿其次氯铜矿、石绿+氯铜矿,晚期(五代、宋、西夏、元、清)大量氯铜矿,其次石绿+氯铜矿[11]36。而在华严寺辽代彩塑所处的时代相当于莫高窟壁画晚期宋代,其所用绿色为孔雀石与绿铜矿混合着色是相对应的。也和这一时期国外此种绿色颜料生产技术进步,应用愈发普遍[17]有一定关系。在华严寺的绿色颜料分析中,不仅有如上述由两种矿物颜料混合使用的情况,同时也发现了孔雀石、氯铜矿作为绿色颜料分别单独使用的实例(图2a1中的绿色样品HYBQ-10的主要成分即为孔雀石;图5b1中的绿色样品HYBQ-1的主要成分则为氯铜矿),说明颜料的单一使用、混合使用与所处的时代、用料的来源、预期的艺术要求等都有着一定的关系。

  • 图3 12号胁侍菩萨

  • Fig.3 No.12Attendant Bodhisattva

  • 2.3 黄色和蓝色

  • 华严寺彩绘泥塑中的黄色和蓝色区域颜料选用相比之下则较为简单,黄色区域(图4a2)HYBQ-16主要是以雌黄(As2S3)为主。雌黄作为一种常用的无机矿物颜料,色彩明亮,理化性质也相对比较稳定。拉曼光谱中153,202,292,309,353和381cm-1均是雌黄的典型拉曼峰[6],其中381和353cm-1处拉曼峰的出现分别是由于As-S键的反对称振动和对称振动所产生的[9]。而蓝色区域(图5a1)HYBQ-17的颜料为传统矿物颜料蓝铜矿[Cu3(CO3)2(OH)2](拉曼峰为262,415,778,1 108,1 441和1 587cm-1)[8,19],蓝铜矿在古代也被称为石青,呈深蓝色,理化性能相对比较稳定。

  • 这两种颜料,黄色的雌黄和蓝色的蓝铜矿(即石青)早在秦代就用于兵马俑彩绘中[10],而在敦煌莫高窟壁画颜料中,早、中、晚期均无黄色矿物颜料检出,文献记载有植物中提取的有机黄色染料藤黄,但到现在没有做出分析结果[11]49。而蓝色颜料部分则是早期为大量青金石,少量石青(即蓝铜矿),中期(隋唐)主要石青和青金石,晚期(五代、宋、元、清)主要是青金石、石青和群青[11]36。从华严寺辽塑彩绘使用黄色的雌黄以及蓝色的蓝铜矿(即石青)的情况看,受更早期中原的影响明显。

  • 图4 21号胁侍菩萨

  • Fig.4 No.21Attendant Bodhisattva

  • 图5 11号胁侍菩萨

  • Fig.5 No.11Attendant Bodhisattva

  • 2.4 胶结物

  • 在古代传统的彩绘泥塑艺术中,制作彩绘层时往往会添加一些辅助材料(胶结剂,包括干性油、蛋白质、动物胶、植物胶、树脂等)来提升彩绘层的稳定性和流动性。而随着外界复杂环境的变化以及自身理化性质的不同,胶结剂的流失降解、老化变质都是十分常见的,这也使得文物中胶结剂的检测愈发困难。红外光谱法作为一种检测有机、高分子化合物中化学键或官能团的常规手段,可以被用来作为文物胶结剂的初步探究,分析其中有无有机物的存在。而在红外光谱的基础上,结合衍生化-热裂解-气相色谱串联质谱的方法。可进一步探究胶结剂中具体的有机成分类别。

  • 彩绘样品的红外光谱结果(图6)表明其明显存在着有机官能团结构。其中,3 400~3 500cm-1的吸收峰为N-H键标志,大致位置为1 630cm-1处的吸收峰则为酰胺Ⅰ键(一般与C=O键的伸缩振动有关)[5],表明彩绘样品中有蛋白质类物质存在的可能性。而2 976~2 854cm-1处的吸收峰分别归属于C-H的反对称和对称伸缩振动吸收峰[20],1 120~1 034cm-1范围内的吸收峰通常会归因于C-O键的伸缩振动[21-23],说明其中有可能还存在着干性油类物质。

  • 在红外光谱的基础上,通过对样品进一步的热裂解技术分析,得到了样品的裂解产物总离子色谱图(图7和图8d),并采用AMIDS和美国盖蒂文物保护中心Michael Schilling团队开发ESCAPE软件对热裂解结果进行提取和分析,所获得的裂解产物以红色区域和金色区域为例分别在表2~3中展示,结果表明红、绿、黄、蓝颜料中的有机物质主要为胶蛋白[24]。虽裂解产物中也含有一元羧酸,但是加入TMAH衍生化试剂后,干性油的存在必须是还含有大量的二元羧酸才可,只含有一元羧酸或极少的二元羧酸不足以证明干性油的存在,也有可能是来源于污染物。

  • 图6 红外光谱图

  • Fig.6 FTIR spectra of polychrome samples

  • 图7 裂解产物总离子色谱图

  • Fig.7 Total ion chromatograms of polychrome samples

  • 图8 22号阿难

  • Fig.8 No.22Ananda

  • 表2 红色区域衍生化后裂解产物

  • Table2 Marker compounds identified in the red area by THM-Py-GC/MS

  • (续表2)

  • 另外,虽然蛋白质类添加材料的基本组成单位为氨基酸,但个别氨基酸类裂解产物的检出可能会受到其它物质碎片离子的干扰,因此确认蛋白质存在必须是通过检测到含氮类裂解产物的存在,如:1-甲基吡咯、吡咯、吲哚、N-甲氧基羰基-d-脯氨酸甲酯等。这是由于蛋白质的标志性裂解产物是氨基酸在高温下反应生成的更小的含氮产物。

  • 与其它彩色颜料区域不同的是,金色区域(取样位置为图8b中圈出所示)HYBQ-19,选取金色及下层呈油状区域)中的有机物质不仅仅是胶蛋白,还检测到了熟桐油,如列表3中所示。说明泥塑在制作过程中,采用了“金胶油”的传统工艺。裂解产物中存在着一系列的一元羧酸和二元羧酸,如表3中的丁酸甲酯、戊酸甲酯、己酸甲酯、壬酸甲酯和丁二酸二甲酯、戊二酸二甲酯、庚二酸二甲酯、辛二酸二甲酯等等,这是干性油最具代表性的裂解产物[25-27],表明胶结剂中含有干性油。同时,裂解产物中还检测到了烷基苯基链烷酸酯类(APAs)的存在,例如表3中的熟桐油和甲基烷基苯基烷酸酯,与之相关的文献曾指出APAs来自于桐酸加热后的热解产物,是熟桐油的典型裂解产物[24,28]。一般来说,以往所用的熟桐油也正是桐油经过高温加热处理后得到的,熟桐油、桐油等也常常作为“金胶油”中的油应用于彩绘泥塑文物当中。

  • 表3 金色区域衍生化后裂解产物

  • Table3 Marker compounds identified in the gold area by THM-Py-GC/MS

  • (续表3)

  • 3 结论

  • 本研究通过对华严寺多个典型彩绘样品综合剖析,得出如下结论:

  • 1)华严寺辽代彩绘颜料层中红色颜料主要是朱砂和铅丹,绿色颜料主要是孔雀石和氯铜矿,蓝色颜料则为蓝铜矿,黄色颜料为雌黄,金色区域则主要是由金构成。所有这些颜料均为我国古代常用的传统矿物颜料,

  • 2)其中,红色和绿色颜料存在着两种同色系颜料混合使用和单独使用的情况。这是有历史传承的,但上述同色颜料的这种混合使用对于颜色的视觉特征的优化和颜料耐候稳定性的提高是有益处的。

  • 3)对于彩绘颜料胶结物的剖析,通过红外光谱和甲基衍生化-热裂解-气相色谱串联质谱技术分析出金色区域的胶结剂主要是熟桐油和胶蛋白,这是传统“金胶油”工艺的体现。而其他红、绿、蓝、黄等彩色区域则只有胶蛋白为胶结剂。这也符合我国古代彩绘的调制传统。

  • 参考文献

    • [1] 李茜.大同华严寺辽代彩塑纹饰类型及特点研究[J].文物鉴定与鉴赏,2020(15):24-25.LI Qian.Study on the types and characteristics of Liao Dynasty polychrome decoration of Huayan Temple in Datong[J].Identification and Appreciation to Cultural Relics,2020(15):24-25.

    • [2] 邰力钟.大同华严寺大雄宝殿壁画内容及艺术价值研究[J].文物鉴定与鉴赏,2020(9):13-15.TAI Lizhong.Study on the content and artistic value of the mural in the Great Buddha’s Hall of Huayan Temple in Datong[J].Identification and Appreciation to Cultural Relics,2020(9):13-15.

    • [3] 崔茜.大同华严寺薄伽教藏殿的壁藏建筑艺术[J].文物鉴定与鉴赏,2018(12):10-11.CUI Qian.The wall art of the Bhagavad Sutra Hall of Huayan Temple in Datong[J].Identification and Appreciation to Cultural Relics,2018(12):10-11.

    • [4] 白雪松.大同华严寺小环境变化对文物本体病害影响初探[J].山西大同大学学报(自然科学版),2019,35(1):92-96.BAI Xuesong.A preliminary study on the effects of small environmental changes on the damage of cultural relics[J].Journal of Shanxi Datong University(Natural Science Edition),2019,35(1):92-96.

    • [5] SENE C,MCCANN M C,WILSON R H,et al.Fourier-transform Raman and Fourier-transform infrared spectroscopy(an investigation of five higher plant cell walls and their components)[J].Plant Physiology,1994,106(4):1623-1631.

    • [6] KLISINSKA-KOPACZ A.Non-destructive characterization of 17th century painted silk banner by the combined use of Raman and XRF portable systems[J].Journal of Raman Spectroscopy:An International Journal for Original Work in All Aspects of Raman Spectroscopy,Including Higher Order Processes,and Also Brillouin-and Rayleigh Scattering,2015,46(3):317-321.

    • [7] DENECKERE A,LEEFLANG M,BLOEM M,et al.The use of mobile Raman spectroscopy to compare three full-page miniatures from the breviary of Arnold of Egmond[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy,2011,83(1):194-199.

    • [8] COSANO D,ESQUIVEL D,COSTA C M,et al.Identification of pigments in the Annunciation sculptural group(Cordoba,Spain)by micro-Raman spectroscopy[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy,2019,214:139-145.

    • [9] GARD F S,SANTOS D M,DAIZO M B,et al.Pigments analysis of an Egyptian cartonnage by means of XPS and Raman spectroscopy[J].Applied Physics A,2020,126(3):628.

    • [10] 张志军.秦始皇陵兵马俑文物保护研究[M].西安:陕西人民教育出版社,1998.ZHANG Zhijun.Research on the protection of the Terracotta Warriors and Horses in the Mausoleum of Emperor Qin Shihuang[M].Xi’an:Shaanxi People’s Education Press,1998.

    • [11] 李最雄.丝绸之路石窟壁画彩塑保护[M].北京:科学出版社,2005.LI Zuixiong.Protection of polychrome clay sculptures on the Silk Road[M].Beijing:Science Press,2005.

    • [12] LEI Z,WU W,SHANG G,et al.Study on colored pattern pigments of a royal Taoist temple beside the Forbidden City(Beijing,China)[J].Vibrational Spectroscopy,2017,92:234-244.

    • [13] DANIILIA S,SOTIROPOULOU S,BIKIARIS D,et al.Panselinos’ Byzantine wall paintings in the Protaton Church,Mount Athos,Greece:a technical examination[J].Journal of Cultural Heritage,2000,1(2):91-110.

    • [14] COCCATO A,BERSANI D,COUDRAY A,et al.Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research[J].Journal of Raman Spectroscopy:An International Journal for Original Work in All Aspects of Raman Spectroscopy,Including Higher Order Processes,and Also Brillouin-and Rayleigh Scattering,2016,47(12):1429-1443.

    • [15] MARCAIDA I,MAGUREGUI M,MORILLAS H,et al.In situ non-invasive characterization of the composition of Pompeian pigments preserved in their original bowls[J].Microchemical Journal,2018,139:458-466..

    • [16] LEI Yong.Copper trihydroxychlorides as pigments in China[J].Studies in Conservation,2012,57(2):106-111.

    • [17] COSANOA D,ESQUIVELA D,MATEOS L D,et al.Spectroscopic analysis of corrosion products in a bronze cauldron from the Late Iberian Iron Age[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy,2018,205:489-496.

    • [18] CHANG T,HERTING G,JIN Y,et al.The golden alloy Cu5Zn5Al1Sn:patina evolution in chloride-containing atmospheres[J].Corrosion Science,2018,133(4):190-203.

    • [19] FROST R L,MARTENS W N,RINTOUL L,et al.Raman spectroscopic study of azurite and malachite at 298 and 77 K[J].Journal of Raman Spectroscopy,2010,33(4):252-259.

    • [20] GELZO M,GRIMALDI M,VERGARA A,et al.Comparison of binder compositions in Pompeian wall painting styles from Insula Occidentalis[J].Chemistry Central Journal,2014,8:65:1-65:10.

    • [21] HAO X,WU H,ZHAO Y,et al.Analysis on the composition/structure and lacquering techniques of the coffin of Emperor Qianlong excavated from the Eastern Imperial Tombs[J].Scientific Reports,2017,7:8446.

    • [22] HAO X,WU H,ZHAO Y,et al.Scientific investigation of the lacquered wooden coffin of Xiang Fei excavated from Eastern Royal Tombs of the Qing Dynasty[J].New Journal of Chemistry,2017,41(18):9806-9814.

    • [23] ILMI M M,NURDINI N,MARYANTI E,et al.Multi-analytical characterizations of prehistoric rock art pigments from Liang Karim Cave,Sangkulirang-Mangkalihat site,East Kalimantan,Indonesia[J].Microchemical Journal,2020,155:104738.

    • [24] HAO X,SCHILLING M R,WANG X,et al.Use of THM-PY-GC/MS technique to characterize complex,multilayered Chinese lacquer[J].Journal of Analytical and Applied Pyrolysis,2019,140:339-348.

    • [25] SONG Y,GAO F,NEVIN A,et al.A technical study of the materials and manufacturing process used in the Gallery wall paintings from the Jokhang temple,Tibet[J].Heritage Science,2018,6:18:1-18:13.

    • [26] WANG N,ZHANG T,MIN J,et al.Analytical investigation into materials and technique:carved lacquer decorated panel from Fuwangge in the Forbidden City of Qianlong Period,Qing Dynasty[J].Journal of Archaeological Science:Reports,2018,17:529-537.

    • [27] LU R,KAMIYA Y,MIYAKOSHI T.Applied analysis of lacquer films based on pyrolysis-gas chromatography/mass spectrometry[J].Talanta,2006,70(2):370-376.

    • [28] WANG X,HAO X,ZHAO Y,et al.Systematic study of the material,structure and lacquering techniques of lacquered wooden coffins from the Eastern Regius Tombs of the Qing Dynasty,China[J].Microchemical Journal,2021,168(2):106369.

  • 参考文献

    • [1] 李茜.大同华严寺辽代彩塑纹饰类型及特点研究[J].文物鉴定与鉴赏,2020(15):24-25.LI Qian.Study on the types and characteristics of Liao Dynasty polychrome decoration of Huayan Temple in Datong[J].Identification and Appreciation to Cultural Relics,2020(15):24-25.

    • [2] 邰力钟.大同华严寺大雄宝殿壁画内容及艺术价值研究[J].文物鉴定与鉴赏,2020(9):13-15.TAI Lizhong.Study on the content and artistic value of the mural in the Great Buddha’s Hall of Huayan Temple in Datong[J].Identification and Appreciation to Cultural Relics,2020(9):13-15.

    • [3] 崔茜.大同华严寺薄伽教藏殿的壁藏建筑艺术[J].文物鉴定与鉴赏,2018(12):10-11.CUI Qian.The wall art of the Bhagavad Sutra Hall of Huayan Temple in Datong[J].Identification and Appreciation to Cultural Relics,2018(12):10-11.

    • [4] 白雪松.大同华严寺小环境变化对文物本体病害影响初探[J].山西大同大学学报(自然科学版),2019,35(1):92-96.BAI Xuesong.A preliminary study on the effects of small environmental changes on the damage of cultural relics[J].Journal of Shanxi Datong University(Natural Science Edition),2019,35(1):92-96.

    • [5] SENE C,MCCANN M C,WILSON R H,et al.Fourier-transform Raman and Fourier-transform infrared spectroscopy(an investigation of five higher plant cell walls and their components)[J].Plant Physiology,1994,106(4):1623-1631.

    • [6] KLISINSKA-KOPACZ A.Non-destructive characterization of 17th century painted silk banner by the combined use of Raman and XRF portable systems[J].Journal of Raman Spectroscopy:An International Journal for Original Work in All Aspects of Raman Spectroscopy,Including Higher Order Processes,and Also Brillouin-and Rayleigh Scattering,2015,46(3):317-321.

    • [7] DENECKERE A,LEEFLANG M,BLOEM M,et al.The use of mobile Raman spectroscopy to compare three full-page miniatures from the breviary of Arnold of Egmond[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy,2011,83(1):194-199.

    • [8] COSANO D,ESQUIVEL D,COSTA C M,et al.Identification of pigments in the Annunciation sculptural group(Cordoba,Spain)by micro-Raman spectroscopy[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy,2019,214:139-145.

    • [9] GARD F S,SANTOS D M,DAIZO M B,et al.Pigments analysis of an Egyptian cartonnage by means of XPS and Raman spectroscopy[J].Applied Physics A,2020,126(3):628.

    • [10] 张志军.秦始皇陵兵马俑文物保护研究[M].西安:陕西人民教育出版社,1998.ZHANG Zhijun.Research on the protection of the Terracotta Warriors and Horses in the Mausoleum of Emperor Qin Shihuang[M].Xi’an:Shaanxi People’s Education Press,1998.

    • [11] 李最雄.丝绸之路石窟壁画彩塑保护[M].北京:科学出版社,2005.LI Zuixiong.Protection of polychrome clay sculptures on the Silk Road[M].Beijing:Science Press,2005.

    • [12] LEI Z,WU W,SHANG G,et al.Study on colored pattern pigments of a royal Taoist temple beside the Forbidden City(Beijing,China)[J].Vibrational Spectroscopy,2017,92:234-244.

    • [13] DANIILIA S,SOTIROPOULOU S,BIKIARIS D,et al.Panselinos’ Byzantine wall paintings in the Protaton Church,Mount Athos,Greece:a technical examination[J].Journal of Cultural Heritage,2000,1(2):91-110.

    • [14] COCCATO A,BERSANI D,COUDRAY A,et al.Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research[J].Journal of Raman Spectroscopy:An International Journal for Original Work in All Aspects of Raman Spectroscopy,Including Higher Order Processes,and Also Brillouin-and Rayleigh Scattering,2016,47(12):1429-1443.

    • [15] MARCAIDA I,MAGUREGUI M,MORILLAS H,et al.In situ non-invasive characterization of the composition of Pompeian pigments preserved in their original bowls[J].Microchemical Journal,2018,139:458-466..

    • [16] LEI Yong.Copper trihydroxychlorides as pigments in China[J].Studies in Conservation,2012,57(2):106-111.

    • [17] COSANOA D,ESQUIVELA D,MATEOS L D,et al.Spectroscopic analysis of corrosion products in a bronze cauldron from the Late Iberian Iron Age[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy,2018,205:489-496.

    • [18] CHANG T,HERTING G,JIN Y,et al.The golden alloy Cu5Zn5Al1Sn:patina evolution in chloride-containing atmospheres[J].Corrosion Science,2018,133(4):190-203.

    • [19] FROST R L,MARTENS W N,RINTOUL L,et al.Raman spectroscopic study of azurite and malachite at 298 and 77 K[J].Journal of Raman Spectroscopy,2010,33(4):252-259.

    • [20] GELZO M,GRIMALDI M,VERGARA A,et al.Comparison of binder compositions in Pompeian wall painting styles from Insula Occidentalis[J].Chemistry Central Journal,2014,8:65:1-65:10.

    • [21] HAO X,WU H,ZHAO Y,et al.Analysis on the composition/structure and lacquering techniques of the coffin of Emperor Qianlong excavated from the Eastern Imperial Tombs[J].Scientific Reports,2017,7:8446.

    • [22] HAO X,WU H,ZHAO Y,et al.Scientific investigation of the lacquered wooden coffin of Xiang Fei excavated from Eastern Royal Tombs of the Qing Dynasty[J].New Journal of Chemistry,2017,41(18):9806-9814.

    • [23] ILMI M M,NURDINI N,MARYANTI E,et al.Multi-analytical characterizations of prehistoric rock art pigments from Liang Karim Cave,Sangkulirang-Mangkalihat site,East Kalimantan,Indonesia[J].Microchemical Journal,2020,155:104738.

    • [24] HAO X,SCHILLING M R,WANG X,et al.Use of THM-PY-GC/MS technique to characterize complex,multilayered Chinese lacquer[J].Journal of Analytical and Applied Pyrolysis,2019,140:339-348.

    • [25] SONG Y,GAO F,NEVIN A,et al.A technical study of the materials and manufacturing process used in the Gallery wall paintings from the Jokhang temple,Tibet[J].Heritage Science,2018,6:18:1-18:13.

    • [26] WANG N,ZHANG T,MIN J,et al.Analytical investigation into materials and technique:carved lacquer decorated panel from Fuwangge in the Forbidden City of Qianlong Period,Qing Dynasty[J].Journal of Archaeological Science:Reports,2018,17:529-537.

    • [27] LU R,KAMIYA Y,MIYAKOSHI T.Applied analysis of lacquer films based on pyrolysis-gas chromatography/mass spectrometry[J].Talanta,2006,70(2):370-376.

    • [28] WANG X,HAO X,ZHAO Y,et al.Systematic study of the material,structure and lacquering techniques of lacquered wooden coffins from the Eastern Regius Tombs of the Qing Dynasty,China[J].Microchemical Journal,2021,168(2):106369.

  • 您是第位访问者
    主办单位:上海博物馆 编辑出版:《文物保护与考古科学》编辑委员会
    地址:上海市徐汇区龙吴路1118号,上海博物馆文物保护科技中心,《文物保护与考古科学》编辑部
    电话:021-54362886 传真:021-54363740 E-mail:wwbhykgkx@163.com
    文物保护与考古科学 ® 2024 版权所有
    沪ICP备10003390号-3
    沪公网安备 31010102005301号
    关闭